《高数双语》课件section 10.2.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《高数双语》课件section 10.2.pptx》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高数双语 高数双语课件section 10.2 双语 课件 section
- 资源描述:
-
1、Section 10.21Riemann,Bernhard2Geometric meaning of the double integralcylindrical body in threedimensional space.Volume of a Cylindrical body01()(,)lim(,)nkkkdkf x y df then it can be think of aSuppose that(,)0,(,)(),zf x yx y 3Volume of a Cylindrical body01()(,)lim(,)nkkkdkf x y df Volume=4Calculat
2、ing Double Integrals Over Rectangles(,)f x yis continuous defined on a rectangular region()x y A():,.axbcyd Then we make a network of lines parallel These lines divide()into to x-and y-axes.We number.Ax y small pieces of area 12,.nAAA these in some order then(,)kkxyChoose a point,kA in each piece 1(
3、,).nnkkkkSf xyA ()(,)f x y d given by 5go to zero,the sums approach a limit called theCalculating Double Integrals Over RectanglesIf f is continuous throughout (),then as we refined the mesh width to y make both x andThe notation for it isdouble integral of f over ().()(,).f x y dxdy or01()(,)lim(,)
4、nkkkAkf x y df xyA Thus,()(,),f x y d As with functions of a single variable,the sums approach this limit nothat determine()are partitioned,c dmatter how the intervals,a bandas long as the norms of the partitions both go to zero.()(,)f x y dA 6Fubinis Theorem for Calculating Double IntegralsSuppose
5、that we wish to calculate the volume under the plane4zxyon the xy-plane.():02,01xy over the rectangular region 10()(4),yyA xxy dy If we denote the area of the cross-section at x asFor each value of x,we may calculate()A x,then the volume is()A xas the integral20().xxA x dx ()A x4zxywhich is the area
6、 under the curve in the plane of the cross section at x.421xyzxO4zxy()(4)Vxy d 7Fubinis Theorem for Calculating Double Integrals,x is held fixed and the integration takes place with()A xIn calculating Then the volume of the entire solid is respect to y.221000Volume()(4).xxA x dxxy dydx 12220007422yx
7、xxxyyyxydxx dx cubic units.2207522xxIf we just want to write instructions for calculating the volume,without carrying out any of the integrations,we could have written 221000Volume()(4)xxyxxyA x dxxy dy dx8()A yyFubinis Theorem for Calculating Double IntegralsWhat would have happened if we had calcu
8、lated the volume by slicingyzxO4zxy421with planes perpendicular to the yaxis?As a function of y,the typical cross-section area is()A y20(4)xxxy dx 22042xxxxxy 62.yTherefore10Volume()yyA y dy 10(62)yyy dy 12065.yy9Fubinis Theorem for Calculating Double Integralsis continuous throughout the rectangula
9、r(,)f x yIf():,axb,cydthen()(,)(,)(,).dbbdcaacf x y df x y dxdyf x y dydx region Fubinis theorem says that double integrals over rectangles can beThus,we can evaluatecalculated as iterated integrals累次积分累次积分.a double integral by integrating with respect to one variable at a time.10Evaluating a Double
10、 IntegralExample for()(,)f x y d Calculate():02,11.xy and2(,)16f x yx ySolutionBy Fubinis theorem,123012xxxx ydy 122()10(,)(16)f x y dx y dxdy 4 .11(216)y dy 12128yy Reversing the order of integration gives the same answer:21212221010(16)3yyx y dydxyx ydx 2220(13)(13)xxdx 202dx 4 .11Double Integrals
11、 over Bounded Nonrectangular Regions()(,)f x y d If ()is a region like the one shown in the xy-planebounded“above”and“below”by thein the left figure,and on the sides1()ygx curves 2()ygx and,xb we may again,xa by the linescalculate the volume by the methodWe first calculate the cross-section areaof s
12、licing.21()()()(,)y gxy gxA xf x y dy (,)f x yis continuous defined on a closed region().12Double Integrals over Bounded Nonrectangular Regionsfromto get the volume as an xb Then the integrate()A xxa toiterated integral21()()()(,).bbgxaagxVA x dxf x y dydx 13Double Integrals over Bounded Nonrectangu
13、lar Regions,then theSimilarly,if()is a region like the one shownin the right figure,bounded by theand1()xh y curves 2()xhy andyd the linesyc andvolume calculated by slicing is givenby the iterated integralVolume21()()(,).dhychyf x y dxdy 14Double Integrals over Bounded Nonrectangular Regionsbe conti
14、nuous on a region().(,)f x yLet with h1 and h2 continuous12,()(),cyd h yxhy2.If()is defined by,then ,c don21()()()(,)(,).dhychyf x y dAf x y dx dy 12,()(),axb gxygx1.If()is defined by with g1 and g2 continuous,then ,a bon21()()()(,)(,).bgxagxf x y dAf x y dy dx y type region x type region Double Int
15、egrals over Bounded Nonrectangular Regions15Example Findwhere()is the region bounded by the line x=1,y=0 and the parabola22()()Ixyd 2.yx 2yx x=1 Oxy21222200()()()xIxydxydy dx 61403xxdx 26105 Double Integrals over Bounded Nonrectangular Regions16Example Findwhere()is the region bounded by the line x=
展开阅读全文