《高数双语》课件section 3-456.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《高数双语》课件section 3-456.pptx》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高数双语 高数双语课件section 3_456 双语 课件 section _456
- 资源描述:
-
1、Properties of FunctionsOverviewMonotonicity of FunctionsLocal Extreme Values of FunctionsGlobal Maxima and MinimaConvexity of FunctionsInflectionsGraphing Functions23Monotonicity of Functionsxyo()yf x abAB()0fx xyo()yf x()0fx abBA(1)The necessary and sufficient condition for the function f to bemono
2、tone increasing(decreasing)on I is(2)If 0f0()in I,then f is strictly monotone increasing,and differentiable in I.:fIR be continuous on I Let Then(decreasing)on I.(0f0)in I;Monotonicity of Functions4Proof(1)SufficiencyFor any 1212,(),x xI xx()f xis continuous on12,x xand is differentiable in12(,).x x
3、By the Lagrange theorem and the condition we have 21210()()()()0(),f xf xfxx where12(,).x x Hence,the function f to be monotone increasing(decreasing)on I.the interval Monotonicity of Functions5()()0(0).f xxf xx0()()()limxf xxf xfxx Proof(continued)(1)NecessitySuppose that f is monotone increasing(d
4、ecreasing)on I.For any xbelonging to the interior I,xxI then0(0).So,xtaking such that6Monotonicity of Functions()0fx ()0fx Since the roots of the equation()0fx are It easy to see that(,1)x if(3,)x and;Discuss the monotonicity of the function 32()395f xxxx.Solution2()3693(1)(3)fxxxxx,11x 23x and.(1,3
5、)x if.7Monotonicity of Functions()f xThen,we have the function is strictly monotone increasing in the interval Finish.Solution(continued)(,1)(3,)and;(1,3)and is strictly monotone decreasing in the interval.Mm Discuss the monotonicity of the function 32()395f xxxx.8Monotonicity of Functions,where2()(
6、1)(1)01.xf xx exxif2(1)(1)0,01.xx exxwhere 2()(12)1,01.xfxx ex Prove that21(01).1xxexxProofIn order to obtain the given inequatity,we need only prove that()fxif2()40,01.xfxxex LetthenBut the sign of is still not clear on 0,1).Let us repeat theprocedure to consider the derivative of function ().fxIt
7、is easy to obtainMonotonicity of Functions9if2()40,01.xfxxex()fxif()(0)0,01,f xfxif()(0)0,01.fxfxif2(1)(1)0,01.xx exxProof(continued)By Theorem 2.7.1,is strictly monotone decreasing on 0,1).Thus Again from Theorem 2.7.1,we know that or This is the desired conclusion.Finish.Prove that21(01).1xxexx10E
8、xtreme Values of Functionsoxyab()yf x 1x2x3x4x5x6x0 :,fIR0.xI Suppose that If there is a such that0()()f xf x 0()()f xf x (),then we say that the function f0.xhas a maximum(minimum)at Maximum and minimum values are given a joint name extreme value极值极值,is called a maximal(minimal)0(,),xU xI 0 xand th
9、e point point or extreme point极值点极值点.11Extreme Values of Functions()0fx 0 xx()0fx 0 xx(1)If for and for,then f has a maximum()0fx 0 xx()0fx 0 xx(2)If for and for,then f has a minimum 0 x then the point is not an extreme point.0,xLet the function f be differentiable in a neighborhood of a point 0()U
10、x0()0.fx,and 0()f x0 x at the point;()fx 0 x(3)If has the same sign on both the left and right sides of the point,0()f x0 x at the point;12Extreme Values of Functionsxyoxyo0 x0 x xyoxyo0 x0 x 13Extreme Values of Functions Find the extreme values of the function 323.()6f xxx2334()(6)xfxxx We need thr
11、ee steps to discuss this problem.,it is obvious that the stationary point is 0 x 6x and.Since Solution(1)Find the stationary points and points where the function is not differentiable.non-differentiability are and the points of4x ,()fx (2)In order to determine the sign of in the neighborhoods of the
12、se points,(,)we partition the interval of definition of the given function points and make a table as following by those (,0)(6,)()fx (0,4)()f xZ(4,6)0460 Minimal PointMaximal PointNon-extreme Pointx14Solution(continued)(,0)(6,)()fx (0,4)()f xZ(4,6)0460 Minimal PointMaximal PointNon-extreme PointxFi
13、nish.From the table we may see that the maximum of the function is(3)Determine the extreme values.3(4)2 4f,(0)0f and the minimum is .Extreme Values of Functions Find the extreme values of the function 323.()6f xxx15Extreme Values of Functions-10-5510-4-2246233()6f xxx Find the extreme values of the
14、function 323.()6f xxx16Extreme Values of Functionsf has a second derivative at a point 0()0fx and,fThen the function has a maximum(minimum)if 0()0fx 0()0fx ().Suppose that the function0 x,0()0fx .0()f x0 x at the point 220000001()()()()()()()2!f xf xfxxxfxxxo xx0()0fx 0 xSince f has a second derivat
15、ive at point 0()U x,in the neighborhood the Taylor formula of the function f with the second order and Peano remainder0().xU x where Since,we have22000001()()()()(),()2!f xf xfxxxo xxxU x.Proofis the following17Extreme Values of Functions0()xU x 0()f x0()()f xf x We can see from this that the sign o
16、f,the first term of the last expression.0()0fx ,or 0()()f xf x,then The minimum property may be proved similarly.Proof (continued)2200001()()()()()2!f xf xfxxxo xx is determined byHence,when0()xU x,f is a maximum of the function.Finish.0()()0f xf x,f has a second derivative at a point 0()0fx and,fTh
17、en the function has a maximum(minimum)if 0()0fx 0()0fx ().Suppose that the function0 x,0()0fx .0()f x0 x at the point Extreme Values of Functions1820,4f 5204f ()f x0,2 ()cossin0fxxx()f x()sincosfxxx we need only consider in a periodic interval.By the last theorem,we may find the extremeLet(2)Find th
18、e second derivative of and consider its sign at these Find the extreme value of the function()sincos.f xxxSolution()f xSince is a periodic function,()f x ,(1)Find the stationary points of the value by the following steps:0,2 x .5,44x.We have the stationary points .stationary points(3)Find the maximu
19、m and minimum of()f x.19Extreme Values of Functions-10-5510-1-0.50.510,2 24f ()f xThen the maximum of the function in the interval is;and the minimum is 524f .Solution(continued)Finish.Find the extreme value of the function()sincos.f xxx200()0fx f(1)()0000()()()0,()0nnfxfxfxfx L0()f x()0()0nfx()0()0
20、.nfx Note If we have 0 x at a stationary point Suppose that the function is n-times differentiable andThen0 x must be an extreme point,and()f xis a maximum of if and a minimum if(2)when n is odd,0 x is not an extreme point.Extreme Values of Functions,then we have to utilizethe higher derivatives of
21、the function.n is even,(1)when21()f x()f x,a bIf a function is continuous on a closed interval properties of continuous functions,must have a global maximumit must be a local maximum value or a local minimum value;if we want to find the global maximum value or global minimum value,()f a()f b and.,th
22、en by the,a band a global minimum on0 x.And if any of them,say(,)a b,is in,possibility is that0 x,a b may be one of the end points of.Therefore,we need to find all stationary points,compare all the function values at these points and values(1)(2)(3)Global maxima and minimaanothernon-differentiable p
23、oints and then22Global maxima and minimaAs we had seen in last lecture,by the definition of maximum and minimal value of a function,they are only local values.But for many problems,we need to find the largest value or smallest value in the fixed interval,and these value is referred as global maximum
24、 and global minimum.()f x0 x()f x,a bIf a function is continuous on a closed interval properties of continuous functions,must have a global maximum.And if any of them,say it must be a local maximum value or a local minimum value;anotherif we want to find the global maximum value or global minimum va
25、lue,()f a()f b and.,then by the,a band a global minimum on(,)a b,is in,possibility is that0 x,a b may be one of the end points of.Therefore,we need to find all stationary points,non-differentiable points and thencompare all the function values at these points and values(1)(2)(3)Global maxima and min
展开阅读全文