《高数双语》课件section 2-1.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《高数双语》课件section 2-1.pptx》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高数双语 高数双语课件section 2_1 双语 课件 section _1
- 资源描述:
-
1、Chapter TwoOverview2In this chapter,we will introduce two very important concepts in calculus,the derivative 导数导数 and the differential 微分微分.l Concept of derivativesl Rules of finding derivativesl Derivation rules for inverse functions and composite functionsl Higher-order derivativesl Derivatives of
2、 implicit and parametric equationsl DifferentialsConcept of DerivativesDefinition of derivatives4Assume that a rigid body moving along a straight line.00,t tt svt 0()v tExample(Instantaneous Velocity)And this can be seen as an approximate value of the instantaneous velocity t If the increment of tim
3、eis very small,then the average velocity of the body over the time intervalcan be calculated by|t Moreover,as becomes smaller,00()()s tts tt .of the body.0t and hence,when ,the limit of average velocity is defined to be the instantaneous velocity.That is,0000()()lim()ts tts tv tt .Definition of deri
4、vatives5and choose a small part,00,xxx xOl0 x0 xx Example(The linear density of a thin bar)We consider a thin bar with continuous nonuniform mass distribution.Its length is l;how can we find the linear density at any point on the bar?It is well known that the mass distribution can be seen as uniform
5、 if the length of bar is very small.Thus,if we select a coordinate axis as following Therefore,the average density can be calculated bythen the mass of this part ison the bar,00()()mm xxm x ;00()()m xxm xmxx .Definition of derivatives6 While tends to zero,x 00000()()()limlimxxm xxm xmxxx 0 xmx will
6、approaches the value of the linear density at ,00()()m xxm xmxx 0 xis the linear density of the thin bar at the point ,that is the limitprovided that this limit exists0 x as .Example(The linear density of a thin bar)Definition of derivatives7AB0 x0 xx x y Oxy()yf x Just like the following figure,it
7、is easy to see that the slope of a tangent line can be defined by000()()tanlimxf xxf xx Example(The slope of a tangent line to a plane curve)Definition of derivatives80(),fx Suppose that the function000()()limxf xxf xx (Derivative导数导数)If the limit0().U xexists,then the function f is said to be deriv
8、able可导可导 at x0,and the limit is called the derivative 导数导数of f at x0,denoted by 0()x xdf xdx,0 x xy ,or0 x xdydx.y=f(x)is defined in a neighborhood of x0,Definition of derivatives900()()yf xxf x 0 xxx If we writethen the formula can be also written as0000()()limlimxxf xxf xyxx .and00000()()()limlimx
9、xf xxf xyfxxx Examples of derivatives10 Let f(x)=13x-6.Find f (4).Solution00(4)(4)(4)lim13(4)13 4lim13.xxfxffxxx Finish.Definition of derivatives110000()()()lim,hhf xf xfxh0000()()()lim.xxf xf xfxxx Note The derivative of f at x0 can be also written in the followingformsorNote If the limit in the de
10、finition does not exist,f is said to be non-If the limit is infinite,f is also non-derivable at x0,but for convenience,we say that the derivative of f at x0 is infinitederivable at x0.().fxand writeDefinition of derivatives12and be denoted by In the same way,we can define the left derivative左导左导数数 o
11、f the function f at x0,0().fx It is easy to prove that if f is derivable at x0,then00()().fxfx 0()fx and are both exist and0()fx 000()()limxf xxf xx Note If the right limit exists,then the limit is calledthe right derivative 右导数右导数 ofand be denoted by0().fx the function f at x0,Definition of derivat
12、ives13Note If the function is derivable at every point of the interval I(when I contains the left end point a of I,f is right derivable at a;when I contains the right end point b of I,f is left derivable at b),:fIRis called derivable on I.then the function funique correspondingIn this case,for every
13、 point x of I,there exists an().fx 0 xf at .0()fx It is easy to see that the derivative of f atis equal0 xto the value of the derived function Therefore,the derivative is a new functionthat is,it is called the derived function of f on I,()fx defined on I,:fIR.dydxdfdx(),fx denoted by or Examples of
14、derivatives14,()1f xx If find.()fx SolutionBecause()11()()1()()xxxf xxf xx xxxxxxxxx xx 020()()()lim11lim()xxf xxf xfxxx xxx we haveFinish.Definition of derivatives15(1)()0c (where c is a constant)(2)()lnxxaaa (0a ,1a )(3)()xxee (4)1()()xxR (5)(sin)cosxx (6)(cos)sinxx (7)1(ln)xx (8)1(log)(0,1)lnaxaa
展开阅读全文