《高数双语》课件section 11.4.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《高数双语》课件section 11.4.pptx》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高数双语 高数双语课件section 11.4 双语 课件 section
- 资源描述:
-
1、Section 11.41Greens Theorem2Theorem Suppose there is a closed bounded domain(1)(,),(,)().P x y Q x yC bounded by a piecewise smooth simple curve(C),and functions 2R Then the following relation holds:,CQPdP x y dxQ x y dyxy indicates that the integration is C where in the positive direction of(C).3Fl
2、ux Density at a Point:DivergenceThis idea is that theWe need a new ideas for Greens Theorem.flux density of a vector field at a point,which in mathematics is calledWe obtain it in the following way.the divergence of the vector field.is the velocity field of a fluidF(,)(,)i(,)jx yP x yQ x ySuppose th
3、at flow in the plane and that the first partial derivatives of P and Q arebe a point in(W)andcontinuous at each point of a region(W).(,)x yLetlet A be a small rectangle as in the figure.The sides of the rectangle,parallel to thecoordinate axes.4Flux Density at a Point:DivergenceThe rate at which flu
4、id leaves the rectangle across the bottom edge is approximate F(,)(j)(,).x yxQ x yx Similarly,we haveExit Rates:Top:Left:F(,)(j)(,)x yyP x yy Bottom:F(,)(j)(,)x yxQ x yx Right:F(,)i(,)xx yyP xx yy F(,)j(,)x yyxQ x yyx 5Flux Density at a Point:Divergence (,)(,)PP x yyP x yxxyy Top and Bottom:Right an
5、d Left:(,)(,)QQ x yyQ x yxyxy Then,we have Flux across rectangle boundaryrectangle areaPQxythereforeFlux across rectangle boundary,PQx yxy flux density of F at the point(,)x ydiv F.6The Flux Divergence or Normal Form of Greens TheoremTheorem The outward flux of a field FijPQacross a simple over the
6、region()div Fclosed curve C equals the double integral of enclosed by C.()()()F n.CCPQdsPdyQdxdxdyxy Divergence integral Outward fluxThe divergence form of Greens Theorem in the plane states that thenet outward flux of a vector field across a simple closed curve can becalculated by integrating the d
7、ivergence of the field over the regionenclosed by the curve.7Divergence in Three DimensionsThe divergence of a vector field F(,)2ijk.x y zxzxyzis the scalar functionF(,)(,)i(,)j(,)kx y zP x y zQ x y zR x y zExample Find the divergence of Solution The divergence of F isF(2)()()xzxyzxyz21.zxdiv FF.PQR
8、xyz Finish.8Operational Rules for Divergences There are some useful rules for the divergences:8.(A)ACCwhere C is a constant.(AB)BAAB.or1.div(A)div ACC 2.div(AB)div Adiv Bwhere u is a derivable scalar function.3.div(A)div Agrad,uuu Aorrot(rotA)grad(divA)A 4.div(AB)B rot AA rot B5.div(rotA)0 6.rot(gra
9、d)0u is called Laplace expression.222222xyz where 7.div(grad),uu Gauss Formula9Theorem Suppose that a region(1)(,),(,)().Q x y z R x y zCV a piecewise smooth closed simple surface(S),and functions 3RV Then the following relation holds:()(),VSPQRdVPdydzQdzdxRdxdyxyz points to the outside of (V).Swher
10、e the normal vector ofis bounded by a piecewise(,),P x y zGauss Formula10Proof We only prove()()VSRdVRdxdyz 21(,)(,)()()12(),(,),(,)xyxyzx yzx yVDDRRdVdz dzzR x y zx yR x y zx yd 123()()()()()SRdxdyRdxdy where the normal vector is downwards on 1,upwards on 2,and outwards on 3.Gauss Formula11Proof(co
11、ntinued)We only prove()()VSRdVRdxdyz 1231()()()2()(),(,)0,(,)xyxyDDRdxdyR x y zx y dRdxdyRdxdyR x y zx y d ()12(),(,),(,)xySDRdxdyR x y zx yR x y zx yd ()()VSRdVRdxdyz Then,Gauss Formula12()()VSPQRdVPdydzQdzdxRdxdyxyz FijkPQRThe flux of a vector field across a closed oriented surface S in the direct
12、ion of the surfaces out ward unit normal field n is()()FSF nSSdd SPQRdivFFxyz ()()()FSF nF.SSVdddV SDivergenceDivergence TheoremTheorem Divergence TheoremThe flux of a vector field F across a closed oriented surface S in the direction of the surfaces out ward unit normal field n equals the integral
13、over the region(V)enclosed by the surface:Fof()()()FSF nF.SSVdddV SThe Divergence Theorem says that undersuitable conditions,the outward flux of a vector field across a closed surface(orientedoutward)equals the triple integral of thedivergence of the field over the region enclosedby the surface.Page
14、 361 Gauss formulaGauss formula()()()FSF nF.SSVdddVS Flux of a vector field F across a closed oriented surface S(,)FP Q R()()2)()SVPQRPdydzQdzdxRdxdydVxyzwhere the normal vector of(S),n,points the outside of(V).()()1)(,)()SVPQRP Q R ndSdVxyzwhere the normal vector of(S),n,points the outside of(V).()
15、()3)(coscoscos)()SVPQRPQRdSdVxyz,(,)x y zare the angles between the outward normal vector aton the surface and the three axes.15Gauss FormulaExample Evaluate33322()(),SIx dydzy dzdxzxydxdy where(S)is1)the outside of the sphere 2222;xyzRSolution()()SVPQRPdydzQdzdxRdxdydVxyz 2)the upper side of the up
展开阅读全文