书签 分享 收藏 举报 版权申诉 / 30
上传文档赚钱

类型《高数双语》课件section 10.3.pptx

  • 上传人(卖家):momomo
  • 文档编号:5900193
  • 上传时间:2023-05-14
  • 格式:PPTX
  • 页数:30
  • 大小:1.10MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《《高数双语》课件section 10.3.pptx》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高数双语 高数双语课件section 10.3 双语 课件 section
    资源描述:

    1、Section 10.3Riemann,Bernhard2Concepts of Triple IntegralsWe use triple integrals to find the volumes of three-dimensional shapes,the masses and moments of solids,and the average values of functionsof three variables.is a function defined on a closed bounded region(V)in space(,)f x y zIf the region o

    2、ccupied by a solid ball.We number the cells that lie inside(V)from 1 to n in some order.We choose(,)kkkxyzin each cell and from a point 1(,).nnkkkkkSf xyzV 3Concepts of Triple IntegralsIf f is continuous and the bounding surface of(V)is made of smooth andkz,kx surfaces joined along continuous curves

    3、,then asky approach zero independently,the sums Sn approach a limit 0()lim(,).ndVSf x y z dV The limit also existsWe call this limit the triple integral 三重积分三重积分 of f over(V).for some discontinuous functions.Element of volume4Concepts of Triple IntegralsIf for any partition of(V)and any selection of

    4、 Pk,the limit of the sum exists.01()(,)lim(,).nkkkkdkVf x y z dVfV Then we say f is integrable over the domain(V),and the limit value is called the triple integral of the function f over the domain (V),denoted by 1(,).nkkkkkfV xyOzkV Element of volumeSuppose f is a function of three variables(),kVV

    5、defined onin the subregion.Then,form the sum ,kkkkP ().kVis any point is the volume ofin space.()VThere is a regionthe subregion,Concepts of Triple IntegralsJust as the area of a plane region can be found by evaluate the doubleintegral,the volume of a region in space also can be found by evaluate Vo

    6、lume().VdV 01()(,)lim(,).nkkkkdkVf x y z dVfV 2()V1()V6Properties of Triple Integralthen(),VSuppose(,)f x y zand(,)g x y zare both integrable over2.Additivity with respect to the domain of integration12()()()(,)(,)(,).VVVf x y z dVf x y z dVf x y z dV,where k is a constant.()()(,)(,)VVkf x y z dVkf

    7、x y z dV(1)1.Linearity Propertyand12(),()VVSuppose that12()()()VVVhave no common part except for their Thenboundaries.(2)()()()(,)(,)(,)(,)VVVf x y zg x y z dVf x y z dVg x y z dV7Properties of Triple Integral4.Mean Value Theoremon().Vthen()()(,)(,)VVf x y z dVg x y z dV,if(,)(,)f x y zg x y z on().

    8、V(1)()(,)0Vf x y z dV ,if(,)0f x y z (2)(,),(,)(),lf x y zLx y zV(4)If()(,).VlVf x y z dVLV3.Domination,such thatis a closed bounded,and connected()VSuppose that ,()V anddomain.()fC V Then there exists at least one point ()(,),.Vf x y z dVfV ()()(,)(,)VVf x y z dVf x y z dV(3)8How to Find Limits of

    9、Integration in Triple IntegralsTo evaluate()(,)Vf x y z dVover a region(V),we integrate first with respect to z,then withrespect to y,finally with x.()(,)(,)Vf x y z dVdxdyf x y z dz 9How to Find Limits of Integration in Triple Integrals()(,)Vf x y z dVIntegrating first with respect to z,then with r

    10、especty,finally with x,take the following steps.Step 1:A sketch.Sketch the region(V)along with its“shadow”()(vertical projection)in the xy plane.Label the upper and lower bounding surfaces of(V)and the upper and lower bounding curves of().10How to Find Limits of Integration in Triple IntegralsStep 2

    11、:The z limits of integration.Draw a line M passing through a typical point(,)x yin()parallel to the z axis.As zincreases,M enters(V)at 1(,)zfx y These are the2(,).zfx y and leaves at z limits of integration.21(,)(,)()(,)zfx yzfx yf x y z dz d “First single and then double”11How to Find Limits of Int

    12、egration in Triple IntegralsDraw a line L passing through a typical point(,)x yin()parallel to the y axis.As yincreases,L enters()at 1()ygx These are the2().ygx and leaves at y limits of integration.Step 3:The y limits of integration.12How to Find Limits of Integration in Triple IntegralsStep 4:The

    13、x limits of integration.Choose x limits that include all linesthrough()parallel to the y axis.Then the integral is2211()(,)()(,)(,).x by gxzfx yx ay gxzfx yf x y z dzdydx“three single integrals”2211()(,)()(,)()(,)(,).bgxfx yagxfx yVf x y z dVf x y z dzdydx 13Computation of Triple IntegralsExample Ev

    14、aluate (),VIxyzdV and0,x where the region(V)is enclosed by the planes0y 1.xyzy O z x 111(V)Oxy11()01zxyM()(,)|01,01x yxyx 0y Computation of Triple IntegralsSolution10()()xyVIxyzdVxyzdz d ()(,)|01,01,x yxyx 111000 xxyxyzdz dydx 1.720 Finish.15Computation of Triple Integrals2()zcczddz Solution The typ

    15、ical cross-section can beThen shown as an ellipse.whereExample Evaluate 222222()(,)1,(,0).xyzVx y za b cabc2(),VIz dV 2()zccIz ddz Since 222222221()(,),|11zxyx ywhere zczzabcc 16Computation of Triple IntegralsSolution (continued)is()z then the area of 22()1,zzdabc Hence 34.15abc 2221cczIabz dzc Fini

    16、sh.17Triple Integrals in Cylindrical CoordinatesDefinition Cylindrical CoordinatesCylindrical coordinates represent a point P as the(,)z in space by ordered triplesright figure.Equations Relating Rectangular(x,y,z)and Cylindrical(r,z)Coordinates222(,tan/).xyy xcos,sin,xyzzwhere0,02,.z 18The Volume E

    17、lement in Cylindrical CoordinatesThe volume element for subdividing a region in space with cylindrical coordinatesis,dVd d dz and then triple integrals in cylindrical coordinatesare then evaluated as iterated integrals.()()(,)(cos,sin,)VVf x y z dVfzd d dz 19Finding a Volume in Cylindrical Coordinat

    18、esExample Find the volume of the region(V)in space,which isand224.xyz bounded by 22zxySolution The equations of thesetwo surface in cylindrical coordinate are24z and2z It is easy to see that the projection region on xOy plane is 2()(,)2,02.or 22()(,)2,x y xy 20Finding a Volume in Cylindrical Coordin

    19、atesSolution(continued)Then the volume can be found by Volume()VdV 22200(42)dd()Vd d dz 2222400dddz 4.2420222 Finish.21Triple Integrals in Spherical CoordinatesEquations Relating Spherical Coordinates to Cartesian andCylindrical Coordinates222220,0,02,().rrxyzzcoszr sinr cossin cosxrsinsin sinyrDefi

    20、nition Spherical CoordinatesSpherical coordinates represent a point P as the(,)r in space by ordered triplesright figure.cossinsinsincosxryrzr22The Volume Element in Spherical CoordinatesThe volume element for subdividing a region in space with spherical coordinatesis2sin,dVrdrd d and the triple int

    21、egrals in spherical coordinatesare then evaluated as iterated integrals.2()()(,)(sin cos,sin sin,cos)sinVVF x y z dVF rrrrdrd d ()(,)?Vf rdV How to find limits of integration in triple integrals2223Finding a Volume in Spherical CoordinatesExample Find the volume of the“ice cream cone”(V)cut from the

    22、by the cone/3.solid sphere 1r Solution 2()sinVVrdrd d 2/312000sinrdrd d .3 Finish.24How to Integrate in Spherical Coordinatesover a region(V)in space in spherical()(,)Vf rdV To evaluatecoordinates,integrating first w.r.t.r,then w.r.t.and finally w.r.t.,take the following steps.Step 1:A sketch.over t

    23、he xy plane.()its projection().VLabel the surfaces that boundalong withSketch the region()V2425How to Integrate in Spherical CoordinatesStep 2:The r limits of integration.Draw a ray M from the origin through()Vmaking an angle with the positivez axis.Also draw the projection of M on the xy plane(call

    24、 the projectionL).The ray L makes an angle withwith the positive x axis.As r increases,M enters()Vand leaves2(,).rg at1(,)rg 2526How to Integrate in Spherical CoordinatesStep 4:The limits of integration.For any given ,the angle tomax.runs from min Step 3:The limits of integration.The ray L sweeps ov

    25、er()as runs from a to b.Then,()(,)Vf rdV max2min1(,)2(,)(,)sin.ggf rrdrd d 2627Computation of Triple IntegralsExample(Page 263)Evaluate 2(),VIz dV where 22222222(,)|,()x y zxyzRxyzRR(V)RR/2Solution 1 Using cylindrical coordinatesSolution 2 Using spherical coordinatesSolution 3 Using the method of “f

    26、irst single and then double”integration or“first double and then single”integration.28Computation of Triple IntegralsExample(Page 263)Evaluate 2(),VIz dV where 22222222(,)|,()x y zxyzRxyzRR(V)Solution 1 Using cylindrical coordinates29Computation of Triple IntegralsSolution 2 Using spherical coordinates30Computation of Triple IntegralsSolution 3 Using the method of “first double and then single”integration.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《高数双语》课件section 10.3.pptx
    链接地址:https://www.163wenku.com/p-5900193.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库