《高数双语》课件section 9.3.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《高数双语》课件section 9.3.pptx》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高数双语 高数双语课件section 9.3 双语 课件 section
- 资源描述:
-
1、Section 9.3Fermat2Partial Derivatives of a Function of Two VariablesThe horizontal coordinate in this plane is x;the vertical coordinate is z.We define the partial derivativeof f with respect to x at the point00(,)xyas the ordinary derivativewith respect to x at0(,)f x yofthe point 0.xx the vertical
2、00(,)xyIf(,),f x yis a point in the domain of a function will cut the surface 0yy(,)zf x y 0(,).zf x y in the curve plane3Partial Derivatives of a Function of Two VariablesDefinition(Partial Derivative偏导数偏导数 with Respect to x)00(,)U xyWe fix the independent variable y at y0,i.e,00(,).xyof0.yy and,x
3、When the independent variable x has an increment0000(,)(,)xx yU xy the corresponding function f(x)has an0000(,)(,).f xx yf xy If the limit00000(,)(,)limxf xx yf xyx exists,then this limit is called the partial derivative of the functionis defined in a neighbourhoodSuppose that the function(,)zf x y(
4、,)zf x y with respect to x at the point 00(,).xyincrement4Partial Derivatives of a Function of Two VariablesDefinition(continued)Partial Derivative with Respect to xis denoted byi.e.The partial derivative of functionrespect to x at(,)zf x y 00(,)xy0000000(,)(,)(,)lim.xxf xx yf xyfxyx 00000000(,)(,)(
5、,),(,),or xxxyxyzffxyzxyxx“(similar to the lowercase Greek letter“”used in the The stylized“limit definition)is just another kind of“d”.It is convenient to have thisdistinguishable way of extending the Leibniz differential notation intoa multivariable context.5Partial Derivatives of a Function of Tw
6、o Variables00(,)xy0000(,)(,),yxyzzxyy 0000000(,)(,)(,)lim.yyf xyyf xyfxyy Similarly,we can define the partial derivative of the function with respect to y as followsat the point or(,)zf x y 00(,).xyfy It may also be denote by6Partial Derivatives of a Function of Two Variables(,)zf x y to x at every
7、pointIf the partial derivative of the function derivative 2(,)Rx yD(,)xfx ycalled the partial derived(,),x yis also a function of two variablefunction偏导函数 with respect to x,denoted by,.or xxzffzxxwith respectexists,then the partial7Partial Derivatives of a Function of Two VariablesExample Finding Pa
8、rtial Derivatives at a Pointwe treat x as a constant and differentiate with respect to y:with respect to x:(4,5)/fy3(4)113.is The value of at 2(31)fxxyyyy03110 x 31.x2(,)31.f x yxxyyifFind the values of andat the point/fx(4,5)/fySolution/fxTo find,we treat y as a constant and differentiate 2(31)fxxy
9、yxx23 100 xy 23.xy/,fySimilarly,to find(4,5)/fx2(4)3(5)is The value of at 7.8Partial Derivatives of a Function of Two VariablesSolution We treat x as a constant and f as a product of y and sin:xy(sin)fyxyxy sinyxyy (sin)xy(cos)()yxyxyy (sin)()xyyy cossin.xyxyxy/,fx(,)sin.f x yyxy DIYwhere Find theEx
10、ample Finding Partial Derivatives as a FunctionifFind/fy(,)sin.f x yyxy Partial Derivatives of a Function of Two Variables9Example Suppose that Prove that.yzx 12.lnyzzzx xx yProof 1,ln.yyzzyxyxxxx Substituting them into the left of given equation,we have 111ln22.lnlnyyyyzzyyxxxxzx xx yxx This is the
11、 conclusion.Finish.10Partial Derivatives of a Function of Two Variables Example Discuss the existence of partial derivatives of the function222222,0,(,)0,0,xyxyxyf x yxy SolutionSince(0,0)(0,0)0,fxfx (0,0)(0,0)0.fyfy The partial derivatives of f at the originboth exist and(0,0)0,(0,0)0.xyffat the or
12、igin.11Partial Derivatives of a Function of Two VariablesDefinition If both partial derivatives of the function at(,)f x yis partial00(,).xythe point(,)f x yexist,then we say that the function derivable at the point 00(,)xyNote is derivable at()f xWe know that if a single variable functionbut this m
13、ay 0,xx 0 xx implies that the function f is continuous at As an example,discuss the not be true with functions of two variables.222222,0,(,)0,0 xyxyxyf x yxy at pointcontinuity of function(0,0).Total Differentials 全微分全微分Definition(Total differential)Suppose that a function(,)zf x y If for00(,)Uxyis
14、defined in a neighbourhoodof the point 00(,).xycan be expressed in the form0000(,)(,)zf xx yyf xy and22,yxy where 12,a aare constants independent of x is an infinitesimal of higher order with respect to as()o and0,0000(,)(,),xx yyUxy the increment of the function f at 00(,)xy12(),zaxayo 12axay is ca
15、lled the total differential of the function f at the pointandthen the function f is said to be differentiable at the point 00(,),x y00(,),xyor00(,).df xydenoted by 00(,)xydz12Total Differentials 全微分全微分Obviously,when r is sufficiently small,the total differential is the linearand main part of the inc
16、rement of the function f at the point00(,).xyDefinition(continued)(Total differential)ThusWe define the differentials of the independent variables to be equal to0012(,).xydza dxa dythen the total differential of 00(,)xy,;xdxydy their increments,that iscan be written asthe function f at the point 001
17、2(,).xydzaxay 1.What conditions will differentiable function satisfy?and2?a 2.If a function is differentiable,what are the values of1a13Total DifferentialsTheorem(Necessary Conditions for Differentiability)Then 00(,);xy(1)f must be continuous at the point is differentiable at a point Suppose that a
18、function(,)zf x y 00(,).xyare expressed2a100200(,),(,),xyafxyafxywhere1aandexist and000000(,)(,)(,).xyxydzfxy dxfxy dy(2)both partial derivatives of the function f at the point 00(,)xy00(,)xyisthe point that is,the total differential of the function f atby 0012(,),xydza dxa dy1415Total Differentials
19、Proof of(1)f must be continuous at the point then the expressionWe have12()zaxayo holds.i.e.0,(0,0).xy Let0lim0,z or00000,0lim(,)(,).xyf xx yyf xy 00(,).xyis continuous at the point(,)f x yThus,If the function f is differentiable at the point00(,),xy16Total DifferentialsProof of(2)The value of a1 an
20、d a2 are just the partial derivatives of f 12().zaxayo 00001(,)(,)(),f xx yf xyaxox so thatthen(,)zf x y Since 00(,),xyis differentiable at the pointwe have0,y Let Notice that 1ais independent of.x,we have0 x Letting 00001(,)(,)().f xx yf xyoxaxx 00000(,)(,)limxf xx yf xyx 1.a 00(,)xfxy Similarly,we
21、 have002(,).yfxya 10()limxoxax 17Total Differentials In this case,the total differential of the function f at the point(,)x y,anddz can be denoted by dfor.xydzf dxf dyDefinition(Differentiable Function)is differentiable at every point in the region(,)zf x y If the function2R,is the then f is said to
展开阅读全文