书签 分享 收藏 举报 版权申诉 / 13
上传文档赚钱

类型《高数双语》课件section 6.1.pptx

  • 上传人(卖家):momomo
  • 文档编号:5900174
  • 上传时间:2023-05-14
  • 格式:PPTX
  • 页数:13
  • 大小:894.73KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《《高数双语》课件section 6.1.pptx》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高数双语 高数双语课件section 6.1 双语 课件 section
    资源描述:

    1、Section 7.12Examples of Differential EquationsSuppose that a plane curve passed through the point(1,2)inthe xOy plane.The slope of the tangent at any point(x,y)to the curve is2x.Find the equation of the curve.Solution By the geometric meaning of derivatives,the desiredcurve y=f(x)should satisfy12,|2

    2、.xdyxydx.Integrating on both sides of the 1st equation with respect to x,we obtaindifferentialequationInitialcondition3Examples of Differential EquationsSolution(continued)Substituting the initial condition to the last21C 1CTherefore,the equation of the desired curve is21.yxxy21yxO12equation,we have

    3、Finish.22yxdxxC where C is an arbitrary constant.It can be evaluated by the initial condition.Suppose that a plane curve passed through the point(1,2)inthe xOy plane.The slope of the tangent at any point(x,y)to the curve is2x.Find the equation of the curve.Example 2 Suppose that a particle with mass

    4、 m falls freely froma position of height H,with initial velocity V0.If we neglect the resistance of air,find the relationship between the height H and time t while the particle is falling.4Examples of Differential EquationsHh(t)SolutionDenote the initial time when the particle startsto fall by t=0,a

    5、nd denote the height of the particle at any time t in the process of falling by h=h(t).By Newtons second law,h should satisfy the followingequation2222i.e.d hd hmmggdtdt 000|,|tthH hV differentialequationInitialconditionsExample 2 Suppose that a particle with mass m falls freely froma position of he

    6、ight H,with initial velocity V0.If we neglect the resistance of air,find the relationship between the height H and time t while the particle is falling.5Examples of Differential EquationsHh(t)Solution(continued)22d hgdt Integrating both sides of the last equation twice,we have21212hgtC tC Finish.201

    7、()-.2h tgtV tHSubstituting the initial condition to the aboveequation yields6Basic ConceptsDefinition(Differential equation)An equation is called a differentialequation(微分方程微分方程)if it contains the derivative or differential of an unknown function.2dyxdx and22d hgdt are both differential equations.De

    8、finition A differential equation in which the unknown function y is a univariate function,is called an ordinary differential equation(常微分方程常微分方程)and will be referred as differential equation(微分方微分方程程).Example:The order of the highest order derivative of the unknown function in the equation is called

    9、 the order(阶阶)of the equation.7Basic Concepts2,dyxdx 0,ydxxdy220dyyxydxFirst-Order22,d hgdt 33,xyyye3()yyxSecond-OrderExample:The general form of a first order differential equation may be expressed by(,)yF x yand F(x,y)is a function which depends on the independent variable x and the dependent vari

    10、able y.8Basic ConceptsDefinition (Solution,General Solution,Initial Conditions and Particular Solution)If the solution contains arbitrary constants and the number of the independent constants just equals the order of the equation,then this solution is called the general solution(通解通解)of the equation

    11、.If all the arbitrary constants in a solution have been determined,then the solution is called a particular solution(特解特解)of the equation.If a function y=f(x)satisfies a given differential equation,then the function y=f(x)is called a solution(解解)of the equation.The additional conditions are called t

    12、he initial conditions(初始条初始条件件)of the equation.9Fundamental Concepts of Differential EquationsNote that the general solution may not be the total solutions.2()0.y yx(1)0.y yExample 10Geometric Interpretation of the First Order Differential Equation2dyxdx 2yxC0|1xy 21yx11Geometric Interpretation of t

    13、he First Order Differential EquationSlope Fields:Viewing Solution CurvesEach time we specify an initial condition y(x0)=y0 for the solution of a differential equation ,the solution curve(graph of the solution)is required to pass through the point(x0,y0)and to have slope f(x0,y0)there.(,)yf x y12Geom

    14、etric Interpretation of the First Order Differential EquationSlope Fields:Viewing Solution CurvesWe can picture the slopes graphically by drawing short line segments of slope f(x,y)at selected points(x,y)in the region of the xy-plane that constitutes the domain of f.Each segment has the same slope as the solution curve through(x,y)and so is tangent to the curve there.We see how the curves behave by following these tangents.13Slope Fields

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《高数双语》课件section 6.1.pptx
    链接地址:https://www.163wenku.com/p-5900174.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库