《高数双语》课件section 11.3.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《高数双语》课件section 11.3.pptx》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高数双语 高数双语课件section 11.3 双语 课件 section
- 资源描述:
-
1、Section 11.312Surface AreaThe right figure shows a surface(S)lyingin a plane().above its“shadow”regionThe surface is defined by beneath it.(,).f x y zc If the surface a equationis smooth,we can define and calculate its area as a double integral over().into small rectangles()The first step is to part
2、ition the region(),S()we may approximate itDirectly above()lies a patch of surfaceof a tangent plane.()with a portion 3Surface AreaIn the right figure gives a magnified view showing the gradient(),of()and(,)f x y z at P and a unit vectorvector pthat is normal to xOy plane.The angle()v lie along the
3、edges of the patchThus,both in the tangent plane.uv is.pbetween The vector u andandf f are normal to the tangent plane.andIt is easy to see that|(u)p|.v 4Surface Area,|cos|ororthen,we haveitself is the area|uv|Since,1|uv|p|cos|cos|Then the area is cos0.provided 00limlim|cos|dd ()1.|cos|d 5Surface Ar
4、eaMoreover,if the surface can be expressed as a equationNotice that(,1).xyzzthen,one of the normal vector of this surface is is the angle between this vector and the positive direction of z axis,then221cos.1xyzz So,()1|cos|xySd 22()1xyxyzzd 22()1.xyxyzzdxdy Similarly,if the surface can be expressed
5、as2(,),(,)()R,xyzf x yx y we have2(,),(,)()R,yzxf y zy z 2(,),(,)()R,xzyf x zx z oror22()1yzyzSxxdydz 22()1xzxzSyydxdz 6Surface AreaExample Find the area of the surface cut from the bottom of the by the plane 220 xyzparaboloid 4.z Solution 2223/2001(41)12rd 22()1xySzzdxdy 22221441xyxydxdy 2220041rrd
6、rd 17 171.6 Finish.77exists,then we say the function f is integrable over the surface(S),and the limit is called the surface integral with respect to surface area offunction f over that is is a portion of a smoothSurface integrals with respect to surface areasurface(S),f(x,y,z)is a function of three
7、(),kSS variables defined onon the subsurface.,kkk and kMis any point the subsurface ,If the limit of sum01()(,)lim(,).nkkkkdkSf x y z dSfS (),SSuppose ()kS 01lim(,),nkkkkdkfS xyOzkS Element of areaof the surfaceis the area of()kS 8Surface integrals with respect to surface areaJust as the arc length
8、can be found by evaluate the line integral of the first type,the surface area in space also can be found by evaluate().SdS Area01()(,)lim(,).nkkkkdkSf x y z dSfS This type of integral is called a surface integral with respect to surfacearea or surface integral of the first type.9Integrating Over a S
9、urfaceDefinition Integral of f over S and Surface IntegralIf(s)is the domain of a surface defined by the equation(,),zz x y is a continuous function defined at the points of(S),then(,)f x y zand the integral of f over S is the integral22()()(,)(,(,)1.xySf x y zf x y z x yzzd dSThe integral itself is
10、 called a surface integral.Surface integrals behave like other double integrals,the integral of thesum of two functions being the sum of their integrals and so on.The domain additivity property takes the form12.nSSSSfdfdfdfdSSSS()(,)Sf x y z dS10Integrating Over a SurfaceExample Integrate(,)f x y zx
11、yz over the surface of the cube cut and1.z from the first octant by the planes1,1xySolution We integrate xyz over each of thesix sides and add the results.on0 xyz Since the sides that lie in the coordinate planes,theintegral over the surface of the cube reduces toxyzdS Cube surface.xyzdS Side CxyzdS
12、 Side AxyzdS Side B11Integrating Over a SurfaceSolution(continued)over the square region(,)1f x y zzSide A is the surface():01,01,xyxy Forin the xy plane.this surface and region,1,xyxydSdddxdy(1),xyzxyxyand1.4 xyxyzdSxyzd Side ASide A()xyxydxdy 1100 xydxdy 102ydy 12Integrating Over a SurfaceSolution
13、(continued)Symmetry tell us that the integrals of xyz over sides B and C are also1.4Hence,1113.4444xyzdS Cube surfaceFinish.School of Science,BUPTIntegrating Over a SurfaceExample Evaluate,dSz is a sphere()where 2222xyza(0).zhhacut from the top by a plane222.zaxySolution isThe equation of()on the xO
14、y plane is,xyDThe projection of()2222:(,)|.xyDx yxyahSince 222221,xyazzaxywe have222xyDdSadxdyzaxy 2ln.aah 22xyDardrdar 2222200arrdrdar Finish.13School of Science,BUPTIntegrating Over a SurfaceExample Evaluate 4xyz dSis bounded by()where 0,0,0 xyzrespectively.1xyzSolution The surface can be divided
15、into fourWe denote the part onparts.0,0,0 xyzand 1.xyzand 3 by 12,are both zero,thenThen,xyzdS xyz dSSince the integrand on the surface 123,4,andandxyz dS1234.xyzxyzxyzxyzdSdSdSdS3(1),xyDxyxy dxdy 14School of Science,BUPT15Integrating Over a SurfaceSolution(continued)is bounded by the lines xyDthen0
16、,0 xywhere1,xyand3(1)xyDxyxy dxdy xyzdS 3.120 11003(1)xxdxyxy dy 1221003(1)23xyyxxdx 310(1)36xxdx 123403(33)6xxxxdx Finish.School of Science,BUPT16Surface Integrals with respect to CoordinatesOriented surface A closed surface has an inside andUsually,a surface has two sides.a surface which is not cl
17、osed may have front and back or an outside;This kind of surface is called two side surface.upper and right sides.In fact,if we choose any point on P the surface and a normal vector at P,then,we move the point in the surface arbitrarily and return to the sameposition of P,the direction of normal vect
18、or may not change its directionfor two side surface.If the normal vector changes direction,the surface is called one sidesurface.School of Science,BUPT17The Fluxe.nIt is easy to see that the flux will change sign,if the direction of flux changes to the opposite direction.The negative sign means that
展开阅读全文