人教版九年级旋转题型汇总.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教版九年级旋转题型汇总.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 旋转 题型 汇总
- 资源描述:
-
1、人教版九年级旋转题型汇总一、旋转中心及旋转角的确定1如图,ABC绕着点O旋转到DEF的位置,则旋转中心是_旋转角是_AO=_,AB=_,ACB=_EDOCBAF2如图,ABC绕着点O逆时针旋转到DEF的位置,则旋转中心及旋转角分别是()A.点B,?ABOB.点O,?AOBC.点B,?BOED.点O,?AOD3.如图,在的正方形网格中,绕某点旋转,得到,则其旋转中心可以是()A点EB点FC点GD点H4如图,正方形中,点F在边BC上,E在边BA的延长线上.(1)若按顺时针方向旋转后恰好与重合.则旋转中心是点;最少旋转了度;(2)在(1)的条件下,若,求四边形的面积.二、旋转图形的做法:1.在平面直
2、角坐标系中,等腰RtOAB斜边OB在y轴上,且OB=4(1)画出OAB绕原点O顺时针旋转90后得到的三角形OAB;(2)求点A在旋转过程中经过的路径长2.如图,在811的方格纸中,每个小正方形的边长均为1,ABC的顶点均在小正方形的顶点处(1)画出ABC绕点顺时针方向旋转90得到的;(2)求点B运动到点B所经过的路径的长3已知,如图,在平面直角坐标系中,三个顶点的坐标分别为A(0,0),B(1,0),C(2,2)以A为旋转中心,把逆时针旋转,得到yx-1-2-2-13221BAC(1)画出;(2)点的坐标为_;(3)求点C旋转到所经过的路线长、4.如图,中,。(1) 用尺规作图,作出绕点A逆时
3、针旋转后得到的(不写画法,保留画图痕迹);结论:_为所求。(2) 在(1)的条件下,连接,求的长。5如图,在88正方形网格中,每个小正方形的边长均为1个单位长度将格点ABC向下平移4个单位长度,得到A?B?C?,再把A?B?C?绕点O顺时针旋转90,得到A?B?C?,请你画出A?B?C?和A?B?C?解:6在平面直角坐标系xoy中,已知三个顶点的坐标分别为画出;画出绕点顺时针旋转后得到的,并求出的长.三、对称中心的找法:1已知:如图,四边形ABCD与四边形EFGH成中心对称,试画出它们的对称中心,并简要说明理由四、中心对称图形的做法:1如图,在正方形网络中,已知格点,请画出关于点成中心对称的五
4、、旋转的应用:1如图,将含角的直角三角尺绕点顺时针旋转后得到,连结。若的面积为,则.2.如图,在正方形ABCD中,E为DC边上的点,连接BE,将BCE绕点C顺时针方向旋转90得到DCF,连接EF,则CEF=度3.在平面直角坐标系中的位置如图所示,其中A(1,2),B(1,1),C(3,1),将绕原点顺时针旋转后得到,则点A旋转到点所经过的路线长为ABCD4.如图,ABC为等边三角形,D是ABC内一点,且AD3,将ABD绕点A旋转到ACE的位置,连接DE,则DE的长为.5如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30到正方形ABCD,则它们的公共部分的面积等于_6如图,已知梯形ABCD中
5、,ADBC,B=90,AD=3,BC=5,AB=1,把线段CD绕点D逆时针旋转90到DE位置,连结AE,则AE的长为_7如图,已知D,E分别是正三角形的边BC和CA上的点,且AE=CD,AD与BE交于P,则BPD_8如图,用等腰直角三角板画AOB=45,并将三角板沿OB方向平移到如图所示的虚线处后绕点M按逆时针方向旋转22,则三角板的斜边与射线OA的夹角?为_9如图,以等腰直角三角形ABC的斜边AB为边作等边ABD,连结DC,以DC为边作等边DCE,B,E在C,D的同侧若则BE=_六、旋转的综合应用:1已知:如图,四边形ABCD中,D=60,B=30,AD=CD求证:BD2=AB2BC22阅读
6、下面材料:小阳遇到这样一个问题:如图(1),O为等边内部一点,且,求的度数.图图图小阳是这样思考的:图(1)中有一个等边三角形,若将图形中一部分绕着等边三角形的某个顶点旋转60,会得到新的等边三角形,且能达到转移线段的目的.他的作法是:如图(2),把绕点A逆时针旋转60,使点C与点B重合,得到,连结.则是等边三角形,故,至此,通过旋转将线段OA、OB、OC转移到同一个三角形中.(1)请你回答:.(2)参考小阳思考问题的方法,解决下列问题:已知:如图(3),四边形ABCD中,AB=AD,DAB=60,DCB=30,AC=5,CD=4.求四边形ABCD的面积.3.(1)如图所示,P是等边ABC内的
展开阅读全文