书签 分享 收藏 举报 版权申诉 / 14
上传文档赚钱

类型九年级数学:一元二次方程经典题型汇总.doc

  • 上传人(卖家):2023DOC
  • 文档编号:5898642
  • 上传时间:2023-05-14
  • 格式:DOC
  • 页数:14
  • 大小:393KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《九年级数学:一元二次方程经典题型汇总.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    九年级 数学 一元 二次方程 经典 题型 汇总 下载 _其它资料_数学_初中
    资源描述:

    1、一元二次方程经典题型汇总一、一元二次方程的概念 1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。2、一元二次方程的一般形式:,它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。一填空题:1关于x的方程mx-3x= x-mx+2是一元二次方程,则m_2方程4x(x-1)=2(x+2)+8化成一般形式是_,二次项系数是_,一次项系数是_,常数项是_.3关于x的一元二次方程(m+3) x+4x+ m- 9=0有一个解为0 , 则m=_.4、.若一元二次方程ax2+b

    2、x+c=0(a0)有一个根为-1,则a、b、c的关系是_5、当 时,方程不是一元二次方程,当 时,上述方程是一元二次方程。二选择题:6在下列各式中 x+3=x; 2 x- 3x=2x(x- 1) 1 ; 3 x- 4x 5 ; x=- +2是一元二次方程的共有( ) A 0个 B 1个 C 2个 D 3个7、下列方程中,一元二次方程是( )(A) (B) (C) (D) 8一元二次方程的一般形式是( )A x+bx+c=0 B a x+c=0 (a0 ) C a x+bx+c=0 D a x+bx+c=0 (a0)9方程6 x- 5=0的一次项系数是( ) A 6 B 5 C -5 D 010

    3、、关于的一元二次方程的一个根是0,则值为( )A、 B、 C、或 D、三、.将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项一般形式二次项系数一次项系数常数项x(3x + 2)=6(3x + 2)(3 t)+ t=9二、一元二次方程的解法 1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如的一元二次方程。根据平方根的定义可知,是b的平方根,当时,当b0时,一元二次方程有2个不相等的实数根;II当=0时,一元二次方程有2个相同的实数根;III当0时,一元二次方程没有实数根练习:一、选择题1、一元二次方程的根的情况为

    4、()有两个相等的实数根有两个不相等的实数根 只有一个实数根没有实数根2、若关于x的一元二次方程没有实数根,则实数m的取值范围是() Am-1 Cml Dm-13、一元二次方程x2x20的根的情况是() A有两个不相等的正根 B有两个不相等的负根 C没有实数根 D有两个相等的实数根图(7)4、已知函数的图象如图(7)所示,那么关于的方程的根的情况是( )A无实数根 B有两个相等实数根C有两个异号实数根D有两个同号不等实数根5、下列关于x的一元二次方程中,有两个不相等的实数根的方程是()(A)x240(B)4x24x10(C)x2x30(D)x22x106、下列方程中有实数根的是()(A)x22x

    5、30(B)x210(C)x23x10(D)7、已知关于x 的一元二次方程 有两个不相等的实数根,则m的取值范围是( )A m1 B m2 Cm 0 Dm08、如果2是一元二次方程x2c的一个根,那么常数c是( )。A、2 B、2 C、4 D、4二、填空题1、方程的解为 。2、阅读材料:设一元二次方程的两根为,则两根与方程系数之间有如下关系:,根据该材料填空:已知,是方程的两实数根,则的值为_3、关于x的一元二次方程x2bxc0的两个实数根分别为1和2,则b_;c_4、方程的解是 5、已知方程有两个相等的实数根,则6、方程x2+2x=0的解为 9、已知x是一元二次方程x23x10的实数根,那么代

    6、数式的值为10、已知是关于的方程的一个根,则_11、若关于的一元二次方程没有实数根,则的取值范围是 12、写出一个两实数根符号相反的一元二次方程:_。13、已知是一元二次方程的一个根,则方程的另一个根是 四、一元二次方程根与系数的关系 如果方程的两个实数根是,那么,。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。五、一元二次方程应用题 学习了一元二次方程的解法以后,就会经常遇到解决与一元二次方程有关的生活中的应用问题,即列一元二次方程解应用题,不少同学遇到这类问题总是左右为难,难以下笔,事实上

    7、,同学们只要能认真地阅读题目,分析题意,并能学会分解题目,各个击破,从而找到已知的条件和未知问题,必要时可以通过画图、列表等方法来帮助我们理顺已知与未知之间的关系,找到一个或几个相等的式子,从而列出方程求解,同时还要及时地检验答案的正确性并作答.现就列一元二次方程解应用题中遇到的常见的十大典型题目,举例说明.1、增长率问题恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.2、商品定价益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则

    8、可卖出(35010a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?3、储蓄问题王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)4、趣味问题一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好

    9、请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?5、古诗问题读诗词解题:(通过列方程式,算出周瑜去世时的年龄).大江东去浪淘尽,千古风流数人物;而立之年督东吴,早逝英年两位数;十位恰小个位三,个位平方与寿符;哪位学子算得快,多少年华属周瑜?6、象棋比赛象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选 手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.7、情景对话春秋旅行社为吸引市民组团去天水湾风

    10、景区旅游,推出了如图1对话中收费标准.某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?图1如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低于700元.如果人数不超过25人,人均旅游费用为1000元.8、等积变形将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m)(1)设计方案1(如图2)花园中修两条互相垂直且宽度相等的小路.(2)设计方案2(如图3)花园中每个角的扇形都相同.图2图4图3以上两种方案是否都能符合条件?若能,请计算出图2

    11、中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由.9、动态几何问题如图4所示,在ABC中,C90,AC6cm,BC8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使PCQ的面积为8平方厘米?(2)点P、Q在移动过程中,是否存在某一时刻,使得PCQ的面积等于ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.10、梯子问题一个长为10m的梯子斜靠在墙上,梯子的底端距墙角6m.(1)若梯子的顶端下滑1m,求梯子的底端水平滑动多少米?(2)若梯子的底端水平向外滑动1m,梯子的顶

    12、端滑动多少米?(3)如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?图511、航海问题如图5所示,我海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.(1)小岛D和小岛F相距多少海里?(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)12、图表信息图6

    13、如图6所示,正方形ABCD的边长为12,划分成1212个小正方形格,将边长为n(n为整数,且2n11)的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张nn的纸片正好盖住正方形ABCD左上角的nn个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n1)(n1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.请你认真观察思考后回答下列问题:(1) 由于正方形纸片边长n的取值不同,(2) 完成摆放时所使用正方形纸片的张数也不同,请填写下表:纸片的边长n23456使用的纸片张数(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.当n2时,

    14、求S1S2的值;是否存在使得S1S2的n值?若存在,请求出来;若不存在,请说明理由.13、探索存在性问题将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.14、平分几何图形的周长与面积问题如图7,在等腰梯形ABCD中,ABDC5,AD4,BC10.点E在下底边BC上,点F在腰AB上.(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示BEF的面积;(2)是否存在线段

    15、EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;图7KG(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成12的两部分?若存在,求此时BE的长;若不存在,请说明理由.15、利用图形探索规律如图,每个正方形有边长为1 的小正方形组成:(1)观察图形,请填写下列表格:正方形边长1357n(奇数)黑色小正方形个数正方形边长2468n(偶数)黑色小正方形个数(2)在边长为n(n1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P25P1?若存在,请写出n的值;若不存在,请说明理由.应用题答案 1解设这两个月的

    16、平均增长率是x.,则根据题意,得200(120%)(1+x)2193.6,即(1+x)21.21,解这个方程,得x10.1,x22.1(舍去).答这两个月的平均增长率是10%. 说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2n求解,其中mn.对于负的增长率问题,若经过两次相等下降后,则有公式m(1x)2n即可求解,其中mn.2解根据题意,得(a21)(35010a)400,整理,得a256a+7750,解这个方程,得a125,a231.因为21(1+20%)25.2,所以a2=31不合题意,舍去.所以35010a350102

    17、5100(件).答需要进货100件,每件商品应定价25元.说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点.3解设第一次存款时的年利率为x. 则根据题意,得(1+0.9x)530.整理,得90x2+145x30.解这个方程,得x10.02042.04%,x21.63.由于存款利率不能为负数,所以将x21.63舍去.答第一次存款的年利率约是2.04%.说明这里是按教育储蓄求解的,应注意不计利息税.4解设渠道的深度为xm,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.则根据题意,得(x+0.1+x+1.4+0.1)x1.8,整理,得x2+0.8x1.80.解这个方程,

    18、得x11.8(舍去),x21.所以x+1.4+0.11+1.4+0.12.5.答渠道的上口宽2.5m,渠深1m.说明求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.5解设周瑜逝世时的年龄的个位数字为x,则十位数字为x3.则根据题意,得x210(x3)+x,即x2-11x+300,解这个方程,得x5或x6.当x5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;当x6时,周瑜年龄为36岁,完全符合题意.答周瑜去世的年龄为36岁. 说明本题虽然是一道古诗问题,但它涉及到数字和年龄问题,通过求解同学们应从中认真口味.6解设共有n个选手参加比赛,每个选手都要与

    19、(n1)个选手比赛一局,共计n(n1)局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为n(n1)局.由于每局共计2分,所以全部选手得分总共为n(n1)分.显然(n1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0,2,6,故总分不可能是1979,1984,1985,因此总分只能是1980,于是由n(n1)1980,得n2n19800,解得n145,n244(舍去).答参加比赛的选手共有45人.说明类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题,都可以仿照些方法求解7解设该单位这次共有x名员工去天水湾风景区旅游.因为10002525000270

    20、00,所以员工人数一定超过25人.则根据题意,得x27000.整理,得x275x+13500,解这个方程,得x145,x230.当x45时,100020(x25)600700,故舍去x1;当x230时,100020(x25)900700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游.说明求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论.8解都能.(1)设小路宽为x,则18x+16xx21815,即x234x+1800,解这个方程,得x,即x6.6.(2)设扇形半径为r,则3.14r21815,即r257.32,所以r7.6.说明等积变形一般都是

    21、涉及的是常见图形的体积,面积公式;其原则是形变积不变;或形变积也变,但重量不变,等等.9解因为C90,所以AB10(cm).(1)设xs后,可使PCQ的面积为8cm2,所以 APxcm,PC(6x)cm,CQ2xcm.则根据题意,得(6x)2x8.整理,得x26x+80,解这个方程,得x12,x24.所以P、Q同时出发,2s或4s后可使PCQ的面积为8cm2.(2)设点P出发x秒后,PCQ的面积等于ABC面积的一半.则根据题意,得(6x)2x68.整理,得x26x+120.由于此方程没有实数根,所以不存在使PCQ的面积等于ABC面积一半的时刻.说明本题虽然是一道动态型应用题,但它又要运用到行程

    22、的知识,求解时必须依据路程速度时间.10解依题意,梯子的顶端距墙角8(m).(1)若梯子顶端下滑1m,则顶端距地面7m.设梯子底端滑动xm.则根据勾股定理,列方程72+(6+x)2102,整理,得x2+12x150,解这个方程,得x11.14,x213.14(舍去),所以梯子顶端下滑1m,底端水平滑动约1.14m.(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动xm.则根据勾股定理,列方程(8x)2+(6+1)2100.整理,得x216x+130.解这个方程,得x10.86,x215.14(舍去).所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.(3)设梯子顶端向下滑动xm时,底

    23、端向外也滑动xm.则根据勾股定理,列方程 (8x)2+(6+x)2102,整理,得2x24x0,解这个方程,得x10(舍去),x22.所以梯子顶端向下滑动2m时,底端向外也滑动2m.说明求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.11解(1)F位于D的正南方向,则DFBC.因为ABBC,D为AC的中点,所以DFAB100海里,所以,小岛D与小岛F相距100海里.(2)设相遇时补给船航行了x海里,那么DEx海里,AB+BE2x海里,EFAB+BC(AB+BE)CF(3002x)海里.在RtDEF中,根据勾股定理可得方程x21002+(3002x)2,整理,得3x21

    24、200x+1000000.解这个方程,得x1200118.4,x2200+(不合题意,舍去).所以,相遇时补给船大约航行了118.4海里.说明求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程.12解(1)依题意可依次填表为:11、10、9、8、7.(2)S1n2+(12n)n2+25n12.当n2时,S122+2521234,S2121234110.所以S1S2341101755.若S1S2,则有n2+25n12122,即n225n+840,解这个方程,得n14,n221(舍去).所以当n4时,S1S2.所以这样的n值

    25、是存在的.说明求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.13解(1)设剪成两段后其中一段为xcm,则另一段为(20x)cm.则根据题意,得+17,解得x116,x24,当x16时,20x4,当x4时,20x16,答这段铁丝剪成两段后的长度分别是4cm和16cm.(2)不能.理由是:不妨设剪成两段后其中一段为ycm,则另一段为(20y)cm.则由题意得+12,整理,得y220y+1040,移项并配方,得(y10)240,所以此方程无解,即不能剪成两段使得面积和为1

    26、2cm2.说明本题的第(2)小问也可以运用求根公式中的b24ac来判定.若b24ac0,方程有两个实数根,若b24ac0,方程没有实数根,本题中的b24ac160即无解.14解(1)由已知条件得,梯形周长为12,高4,面积为28.过点F作FGBC于G,过点A作AKBC于K.则可得,FG4,所以SBEFBEFGx2+x(7x10).(2)存在.由(1)得x2+x14,解这个方程,得x17,x25(不合题意,舍去),所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE7.(3)不存在.假设存在,显然有SBEFS多边形AFECD 12,即(BE+BF)(AF+AD+DC)12.则有x2+

    27、x,整理,得3x224x+700,此时的求根公式中的b24ac5768400,所以不存在这样的实数x.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成12的两部分.说明求解本题时应注意:一是要能正确确定x的取值范围;二是在求得x25时,并不属于7x10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.15解(1)观察分析图案可知正方形的边长为1、3、5、7、n 时,黑色正方形的个数为1、5、9、13、2n1(奇数);正方形的边长为2、4、6、8、n 时,黑色正方形的个数为4、8、12、16、2n(偶数).(2)由(1)可知n为偶数时P12n,所以P2n2

    28、2n.根据题意,得n22n52n,即n212n0,解得n112,n20(不合题意,舍去).所以存在偶数n12,使得P25P1.说明本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解.综上所言,列一元二次方程解应用题是列一元一次方程、二元一次方程组解应用题的延续和发展,列方程解应用题就是先把实际问题抽象为方程模型,然后通过解方程获得对实际问题的解决.列一元二次方程解应用题的关键是:找出未知量与已知量之间的联系,从而将实际问题转化为方程模型,要善于将普通语言转化为代数式,在审题时,要特别注意关键词语,如“多少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等等.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:九年级数学:一元二次方程经典题型汇总.doc
    链接地址:https://www.163wenku.com/p-5898642.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库