《高数双语》课件section 3-3.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《高数双语》课件section 3-3.pptx》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高数双语 高数双语课件section 3_3 双语 课件 section _3
- 资源描述:
-
1、Taylors Theorem And Its Applications2Overview0()U x variable x in 0 x,where is a fixed point,can be calculated simplyThis approximation is simple and is easily used,but it has low precision,since and the approximation is,and also thisIn Chapter 2,we had seen that the value of a smooth function for s
2、omeby approximation 000()()()()f xf xfxxx.()f xthe difference between the accurate value of 0 xx just a infinitesimal of higher order with respect to is very small.0|xx approximation can only be used in the case of In this lecture,we will form a new technique to approximate the value of a function w
3、ith higher order of computation error.3Taylors Theorem000()()()f xfxxx 2010200()()()()nnnP xaa xxaxxaxxL()nP xis using a line,()f x,to approximate a curve.It can be(1)n n find a suitable polynomials of degreefto approximate a given curve of function,such that the approximate error is.That isIf we ca
4、n do so,what are the coefficients of,and how can we obtain000()()()()f xf xfxxx It is easy to see that the approximation,in fact,()f ximaged that if we use a suitable curve to approximate curve,the applicablewill be wider and the precision will be improved.It seems nature that we chosethe polynomial
5、s as the suitable curve.0()nxx an infinitesimal of higher order with respect to 0()()()nnf xP xo xx.them?Then the question becomes to,we try to4Taylors TheoremTaylor PolynomialPeano remainderTaylor coefficientsTaylor,Brook(1685-1731)English mathematician 200000()000()0000()()()()()()1!2!()()()!()()(
6、)!nnnknknkfxfxf xf xxxxxfxxxo xxnfxxxo xxk L L(Taylors theorem with Peano remainder)Suppose that the function f is differentiable of order n at the point x0.Then5Taylors TheoremTheorem(Taylors theorem with Lagrange remainder)Suppose that the function f is differentiable of order 1n in a interval I,0
7、 xI.Then for any xI,there exists at least one point ,which lies between x and 0 x,such that Taylor,Brook(1685-1731)English mathematician Lagrange remainderLagrange Formula200000()(1)1000()(1)10000()()()()()()1!2!()()()()!(1)!()()()()!(1)!nnnnknnknkfxfxf xf xxxxxfxfxxxxnnfxfxxxxkn L6Taylors Theorem0M
8、 Compare to the Peano remainder,the Lagrange remainder can be used to estimate the error more precisely.such that(1)|()|nfxM ,xa b ,In fact,if the function f is differentiable of order n+1 on a,b,and there is a constant then0nR()nP xWe can see from the inequality that n as.This means that to approxi
9、mate a differentiable function,the error may be make arbitrarilyif we utilize the polynomial ,a bof any order in the whole interval small(1)110|()|()|()(1)!(1)!nnnnfMRxxxbann .n is taken large enough.while7Taylors TheoremColin Maclaurin(1698-1746)Scottish mathematician If we let 00 x ,then the Lagra
10、nge formula becomes()(1)21()(1)10(0)(0)(0)()()(0)1!2!(1)!(0)(),01.!(1)!nnnnknnknkffffxf xfxxxxnnffxxxkn Land this formula is called the Maclaurin formula.8Maclaurin Formulae for Some Elementary Functions2112!(1)!nxxnxxeexxnn L(,)x ()xf xe Maclaurin formula for the exponential function()()kxfxe Since
11、 we havewhere 01 and.()(0)1kf and,9Maclaurin Formulae for Some Elementary Functions()()sin,0,1,2,2kfxxkkn L()10,2(0),1,2,(1),21kmkmfmkm L35721121cossin(1)(1)3!5!7!(21)!(21)!mmmmxxxxxxxxmm L(,)x ()sinf xx()cosf xx Maclaurin formula for and()sinf xx Let,since or()(0)1kf,thenwhere and 01.we have 10Macl
12、aurin Formulae for Some Elementary FunctionsSimilarly,we have242122coscos1(1)(1)2!4!(2)!(22)!mmmmxxxxxxmm L()sinf xx()cosf xx Maclaurin formula for and(,)x where and 01.11Maclaurin Formulae for Some Elementary Functions()1(1)!()(1),1,2,(1)kkkkfxknx L()1(0)(1)(1)!kkfk 234111ln(1)(1)(1)234(1)(1)nnnnnx
展开阅读全文