《高数双语》课件section 7-6.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《高数双语》课件section 7-6.pptx》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高数双语 高数双语课件section 7_6 双语 课件 section _6
- 资源描述:
-
1、Fourier Series of Other Forms1Fourier Expansions of Periodic Functions with Period 2L2Suppose a periodic function f(x)satisfies Dirichlet conditions on the interval L,L and has period 2L.Set,Lxt ,.t ()().Lf xftg t Then,g(t)is a periodic function with period 2 and satisfies Dirichlet conditions on th
2、e interval ,.01()cossin2nnnag tantbnt We have011();()cos(1);1()sin(1).nnag t dtag tntdtnbg tntdtn where3Fourier Expansions of Periodic Functions with Period 2LThe trigonometric seriesThe constants a0,an and bn are the Fourier coefficients of whose coefficients are determined by.LxLf.is called the Fo
3、urier series of the function f over the intervalDefinition(Fourier series of a function with period 2L)01cossin2nnnan xn xabLL 011();()cos(1);1()sin(1).LLnLLLnLn xaf x dxaf xdxnLLLn xbf xdxnLL 4Convergence TheoremTheorem(Dirichlets theorem)Assume that the function f is piecewise monotone on the inte
4、rval and is continuous except for a finite number of discontinuous points of the firsttype.Then the Fourier series of the function f must converge on the interval and its sum function is,LxL(),(0)(0)(),2(0)(0),2f xxf xf xS xxfLf LxL if is a point of continuity;if is a point of discontinuity;if.,LxLI
5、n this case we also say the Fourier series is the of f.0111();()cos;()sin.LLLnnLLLn xn xaf x dxaf xdxbf xdxLLLLL5Fourier Expansions of Periodic Functions with Period 2LSolution Find the Fourier series for the function20,()1,01,0,12.xxf xxx and the sum of the series.20102201111()()1222LLaf x dxf x dx
6、xdxdxL022111;2222x 6Fourier Expansions of Periodic Functions with Period 2L20,()1,01,0,12.xxf xxx Solution(continued)0111();()cos;()sin.LLLnnLLLn xn xaf x dxaf xdxbf xdxLLLLL22012011()cos()cos2211coscos2222LnLn xn xaf xdxf xdxLLn xn xxdxdx 2221(1cos)sin;2nnnn 22012011()sin()sin2211sinsin2222LnLn xn
7、xbf xdxf xdxLLn xn xxdxdx 1(1cos2cos).2nnn 7Fourier Expansions of Periodic Functions with Period 2LSolution(continued)0221211;(1cos)sin;(1cos2cos).222nnnnaanbnnnn The Fourier series for the given function is012211cossin2121(1cos)sincos4221(1cos2cos)sin.22nnnnnan xn xabLLnn xnnnnn xnn 8Fourier Expans
8、ions of Periodic Functions with Period 2LSolution(continued)20,()1,01,0,12.xxf xxx yxO264-6-2-41-2(),42,4,411,42,1()0,1,2,4.21,412f xxkkkxkS xkxkxk 9Integrals of Even and Odd FunctionsEven function:0()2()LLLg x dxg x dx Odd function:()0LLg x dx Because of these two rules,even and odd extensions of a
9、 functionThe following results also hold for even and odd functions.are convenient to use.1.The product of two even functions is even.2.The product of an even functions with an odd function is odd.3.The product of two odd functions is even.Fourier Expansions of Periodic Functions with Period 2L10Cor
10、ollary Suppose that the function f satisfies Dirichlet conditions on the interval-L,Land has period 2L.Let .(1)While f(x)is an odd function,its Fourier expansion iswhere(2)While f(x)is an even function,its Fourier expansion iswhere1|()(0)(0)2Cxf xf xf x1()sin()nnn xf xbxCL 02()sin.Lnn xbf xdxLL 01()
11、cos()2nnan xf xaxCL 00022();()cos.LLnn xaf x dxaf xdxLLL 11Fourier Expansions of Periodic Functions with Period 2L Find the Fourier Expansion for f,where f is a periodic function with period 6 and defined on interval-3,3 as follows1,30;()103.xf xx Solution033000;0;2232sincos(1cos)3333nnaan xn xbdxnn
12、n 0,221(1).4,21(21)nnknknk 12Fourier Expansions of Periodic Functions with Period 2LSolution(continued)14(21)()sin,(,).(21)3kkxf xxAk Since f(x)is continuous except|3,0,1,2,Ax xk kwe have Find the Fourier Expansion for f,where f is a periodic function with period 6 and defined on interval-3,3 as fol
13、lows1,30;()103.xf xx Find the Fourier Expansion for f,where f is a periodic function with period 4 and defined on interval-2,2 as follows13Fourier Expansions of Periodic Functions with Period 2L1,|;()20|2.xf xx yxO4+4-4+-4-1/(2)-44-2214Fourier Expansions of Periodic Functions with Period 2LSolution0
展开阅读全文