书签 分享 收藏 举报 版权申诉 / 29
上传文档赚钱

类型《高数双语》课件section 7-6.pptx

  • 上传人(卖家):momomo
  • 文档编号:5897858
  • 上传时间:2023-05-14
  • 格式:PPTX
  • 页数:29
  • 大小:617.03KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《《高数双语》课件section 7-6.pptx》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高数双语 高数双语课件section 7_6 双语 课件 section _6
    资源描述:

    1、Fourier Series of Other Forms1Fourier Expansions of Periodic Functions with Period 2L2Suppose a periodic function f(x)satisfies Dirichlet conditions on the interval L,L and has period 2L.Set,Lxt ,.t ()().Lf xftg t Then,g(t)is a periodic function with period 2 and satisfies Dirichlet conditions on th

    2、e interval ,.01()cossin2nnnag tantbnt We have011();()cos(1);1()sin(1).nnag t dtag tntdtnbg tntdtn where3Fourier Expansions of Periodic Functions with Period 2LThe trigonometric seriesThe constants a0,an and bn are the Fourier coefficients of whose coefficients are determined by.LxLf.is called the Fo

    3、urier series of the function f over the intervalDefinition(Fourier series of a function with period 2L)01cossin2nnnan xn xabLL 011();()cos(1);1()sin(1).LLnLLLnLn xaf x dxaf xdxnLLLn xbf xdxnLL 4Convergence TheoremTheorem(Dirichlets theorem)Assume that the function f is piecewise monotone on the inte

    4、rval and is continuous except for a finite number of discontinuous points of the firsttype.Then the Fourier series of the function f must converge on the interval and its sum function is,LxL(),(0)(0)(),2(0)(0),2f xxf xf xS xxfLf LxL if is a point of continuity;if is a point of discontinuity;if.,LxLI

    5、n this case we also say the Fourier series is the of f.0111();()cos;()sin.LLLnnLLLn xn xaf x dxaf xdxbf xdxLLLLL5Fourier Expansions of Periodic Functions with Period 2LSolution Find the Fourier series for the function20,()1,01,0,12.xxf xxx and the sum of the series.20102201111()()1222LLaf x dxf x dx

    6、xdxdxL022111;2222x 6Fourier Expansions of Periodic Functions with Period 2L20,()1,01,0,12.xxf xxx Solution(continued)0111();()cos;()sin.LLLnnLLLn xn xaf x dxaf xdxbf xdxLLLLL22012011()cos()cos2211coscos2222LnLn xn xaf xdxf xdxLLn xn xxdxdx 2221(1cos)sin;2nnnn 22012011()sin()sin2211sinsin2222LnLn xn

    7、xbf xdxf xdxLLn xn xxdxdx 1(1cos2cos).2nnn 7Fourier Expansions of Periodic Functions with Period 2LSolution(continued)0221211;(1cos)sin;(1cos2cos).222nnnnaanbnnnn The Fourier series for the given function is012211cossin2121(1cos)sincos4221(1cos2cos)sin.22nnnnnan xn xabLLnn xnnnnn xnn 8Fourier Expans

    8、ions of Periodic Functions with Period 2LSolution(continued)20,()1,01,0,12.xxf xxx yxO264-6-2-41-2(),42,4,411,42,1()0,1,2,4.21,412f xxkkkxkS xkxkxk 9Integrals of Even and Odd FunctionsEven function:0()2()LLLg x dxg x dx Odd function:()0LLg x dx Because of these two rules,even and odd extensions of a

    9、 functionThe following results also hold for even and odd functions.are convenient to use.1.The product of two even functions is even.2.The product of an even functions with an odd function is odd.3.The product of two odd functions is even.Fourier Expansions of Periodic Functions with Period 2L10Cor

    10、ollary Suppose that the function f satisfies Dirichlet conditions on the interval-L,Land has period 2L.Let .(1)While f(x)is an odd function,its Fourier expansion iswhere(2)While f(x)is an even function,its Fourier expansion iswhere1|()(0)(0)2Cxf xf xf x1()sin()nnn xf xbxCL 02()sin.Lnn xbf xdxLL 01()

    11、cos()2nnan xf xaxCL 00022();()cos.LLnn xaf x dxaf xdxLLL 11Fourier Expansions of Periodic Functions with Period 2L Find the Fourier Expansion for f,where f is a periodic function with period 6 and defined on interval-3,3 as follows1,30;()103.xf xx Solution033000;0;2232sincos(1cos)3333nnaan xn xbdxnn

    12、n 0,221(1).4,21(21)nnknknk 12Fourier Expansions of Periodic Functions with Period 2LSolution(continued)14(21)()sin,(,).(21)3kkxf xxAk Since f(x)is continuous except|3,0,1,2,Ax xk kwe have Find the Fourier Expansion for f,where f is a periodic function with period 6 and defined on interval-3,3 as fol

    13、lows1,30;()103.xf xx Find the Fourier Expansion for f,where f is a periodic function with period 4 and defined on interval-2,2 as follows13Fourier Expansions of Periodic Functions with Period 2L1,|;()20|2.xf xx yxO4+4-4+-4-1/(2)-44-2214Fourier Expansions of Periodic Functions with Period 2LSolution0

    14、000022110;();22221121cossinsin.222222Lnnbaf x dxdxLn xn xnadxnn So,111()sincos.422nnn xf xn Find the Fourier Expansion for f,where f is a periodic function with period 4 and defined on interval-2,2 as follows1,|;()20|2.xf xx 15Fourier Expansions of Functions Defined on 0,LQuestion:How than can we ca

    15、lculate a Fourier series expansion for f on 0,L?To do so,we extend the function so that it is defined over the symmetric intervalHow,though,do we define the extension of f for 0?Lx.LxL0LxThe answer is that we define the extension to be any function over we choose as long as the extension and its der

    16、ivative are piecewise continuous(in order to satisfy the Dirichlet conditions).LOx16Anyway,there are two special extensions that are particularly useful and whoseFourier Expansions of Functions Defined on 0,LFourier coefficients are especially easy to calculate;extensions of f.LOxthese are the even

    17、and odd-L1()sinnnn xf xbL Question:How than can we calculate a Fourier series expansion for f on 0,L?17Integrals of Even and Odd FunctionsThe graph of an odd function is symmetric about the origin.The graph of an even function is symmetric about the y-axis.This observation can make the integrals of

    18、even and oddfunctions over intervals symmetric about the origin relatively easy to calculate.18Even Extension:Fourier Cosine SeriesWe define the even extension of f by requiring that is specified for the interval 0.xL()yf x Suppose that the function()(),.fxf xLxLabout()yf x Graphically,we obtain the

    19、 even extension by reflecting The even extension of a function is illustrated in the following.the y-axis.19Therefore,if we used the even extension for a function f,we obtain theEven Extension:Fourier Cosine SeriesFourier coefficients01()cos.2nnan xf xaL 0012()()LLLaf x dxf x dxLL 012()cos()cos,LLnL

    20、n xn xaf xdxf xdxLLLL EvenThe Fourier series of f is1()sin0.LnLn xbf xdxLL Odd20Fourier Cosine Seriesis the cosine series01()cos,2nnan xF xaL where00022(),()cos.LLnn xaf x dx af xdxLLL LxLof an even function F on the interval Suppose we extend the function f from interval 0,L to-L,0)so that the exte

    21、nded function F is an even function,that is(),0,()()0.f xxLF xfxLx This extension is called the even extension.In this case,The Fourier expansion 01()cos.2nnan xf xaL The Fourier expansion of the function f on the interval 0,L is 21Fourier Cosine Series Find the Fourier cosine series for the functio

    22、n1,0,2()0,.2xf xx Solution22Fourier Cosine SeriesFor the Fourier cosine series,we select the evenSolution(continued)The Fourier coefficients are.xextension of the function over/2021x 2sin.2nn /202dx 002()af x dx 02()cosnn xaf xdx /202cosnxdx Therefore,we have the Fourier cosine expansion112()sincos.

    23、22nnf xnxn 0000122()cos,(),()cos.2LLnnnan xn xf xaaf x dxaf xdxLLLL Finish.23Fourier Cosine SeriesNext figure shows the Fourier cosine approximation f as n varies up to1,5 and 20 terms.24Odd Extension:Fourier Sine Seriesspecified for the interval 0.xLConsider again a function()yf x We defined the od

    24、d extension of f by requiring that()(),.fxf xLxL about()yf x Graphically,we obtain the even extension by reflecting The odd extension of a function is illustrated in the following.the origin.25Therefore,if we used the odd extension for a function f,we obtain theOdd Extension:Fourier Sine SeriesFouri

    25、er coefficients1()sin.nnn xf xbL 01()0LLaf x dxL 1()cos0,LnLn xaf xdxLL OddThe Fourier series of f is012()sin()sin.LLnLn xn xbf xdxf xdxLLLL Even26Fourier Sine Seriesis the sine seriesLxL an odd function F on the interval 1()sin,nnn xF xbL where02()sin.Lnn xbf xdxLL Suppose we extend the function f

    26、from interval(0,L to-L,0 so that the extended function F is an odd function,that is(),0,()00,()0.f xxLF xxfxLx This extension is called the odd extension.In this case,The Fourier expansionThe Fourier expansion of the function f on the interval(0,L is1()sin.nnn xf xbL 27Fourier Sine Series Find the F

    27、ourier sine series for the function1,0,2()0,.2xf xx Solution28Fourier Sine SeriesFor the Fourier sine series,we select the oddSolution(continued)The Fourier coefficients are.x extension of the function over 21cos.2nn 02()sinnn xbf xdx /202sinnxdx Therefore,we have the Fourier sine expansion12()1cossin.2nnf xnxn 012()sin,()sin.Lnnnn xn xf xbbf xdxLLL Finish.29Fourier Sine SeriesNext figure shows the Fourier sine approximation f as n varies up to1,5 and 20 terms.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《高数双语》课件section 7-6.pptx
    链接地址:https://www.163wenku.com/p-5897858.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库