《高数双语》课件section 7-5.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《高数双语》课件section 7-5.pptx》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高数双语 高数双语课件section 7_5 双语 课件 section _5
- 资源描述:
-
1、Fourier Series12The Fourier SeriesWhen investigating the problem of heat conduction in a long thin insulated rod,Joseph Fourier needed to express a function as a trigonometric series 三角级数三角级数.()f xcoefficients and ()for which0,naanb1n Generally,if is defined on the interval ,we need to know the()f x
2、x nnnaf xanxbnx01()cossin2 (1)3The Fourier SeriesNotice that the interval is symmetric about the origin.xThis equation called a Fourier series for on the interval .()f x(,)01()cossin2nnnaf xanxbnx Assume that is expressible as the trigonometric series given by()f xthe Equation(1).01212,.a a ab bWe w
3、ant to find a way to calculate the coefficients4Orthogonality of the system of trigonometric functionsIt is easy to prove that definite integral of the product of any two different functions of1,cos,sin,cos2,sin2,cos,sin,xxxxnxnxsquare of any function of the system over is not equal to zero.,over th
4、e interval is zero;and the definite integral of the,on .,The key to the calculations is the definite integral 01()cossin2nnnaf xanxbnx 5Orthogonality of the system of trigonometric functions5.0,sinsin,mnmxnxdxmn 1.1 cos0nxdx 6.212dx 2.1 sin0nxdx 3.0,coscos,mnmxnxdxmn 4.cossin0mxnxdx Trigonometric In
5、tegrals6Orthogonality of the system of trigonometric functionsOrthogonality正交性),.a b()()0,baf xg x dx then f and g are said to be orthogonal on If functions f and g are both integrable over the interval and,a b,.a bSuppose that is a sequence of functions on()nfxdifferent functions of the sequence ar
6、e orthogonal on()nfx,.a bsystem of orthogonal functions on()nfxand2()0(1,2,),bnafx dxn then the sequence is called a ,a bIf any two7Fourier SeriesCalculation of a0operations for integration and summation can be interchanged to obtainWe integrate both sides of Equation(1)from to(2)011()cossin.2nnnnaf
7、 x dxdxanxdxbnxdxTherefore,000().22aa xf x dxdxa For every positive integer n,the last two integrals on the right-hand side of Solving for a0 yieldsequation(2)are zero.01().af x dx and assume that the 01()cossin2nnnaf xanxbnx 8Fourier Series Calculation of amWe multiply both sides of Equation(1)byco
8、s,0,mx m the result from:to (3)011()coscos2coscossincos.nnnnaf xmxdxmxdxanxmxdxbnxmxdx and integrate 01()cossin2nnnaf xanxbnx 9Fourier Series 1()cos.maf xmxdx Therefore,can be further reduced toThe first integral on the right-hand side of Equation(3)is zero and the equation()coscoscos.mmf xmxdxamxmx
9、dxa Calculation of am 01()cossin2nnnaf xanxbnx 10Fourier Series Calculation of bmWe multiply both sides of Equation(1)bysin,0,mx m tothe result from:and integrate(4)011()sinsin2cossinsinsin.nnnnaf xmxdxmxdxanxmxdxbnxmxdx 01()cossin2nnnaf xanxbnx 11Fourier Series Thus,the equation(4)can be further re
10、duced to1()sin.mbf xmxdx Therefore,()sinsinsin.mmf xmxdxbmxmxdxb 011();()cos(1);1()sin(1).nnaf x dxaf xnxdxnbf xnxdxn Calculation of bm 01()cossin2nnnaf xanxbnx 12Fourier SeriesThe trigonometric seriesThe constants a0,an and bn are the Fourier coefficients of whose coefficients are determined by.xf.
11、is called the Fourier series of the function f over the interval 01cossin2nnnaanxbnx 011();()cos(1);1()sin(1).nnaf x dxaf xnxdxnbf xnxdxn 13Finding a Fourier Expansion Find the Fourier series of the function1,0,(),0.xf xxx SolutionThe piecewise continuous functionFrom the last definition we have01()
展开阅读全文