书签 分享 收藏 举报 版权申诉 / 13
上传文档赚钱

类型《高数双语》课件section 9.4.pptx

  • 上传人(卖家):momomo
  • 文档编号:5897840
  • 上传时间:2023-05-14
  • 格式:PPTX
  • 页数:13
  • 大小:416.44KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《《高数双语》课件section 9.4.pptx》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高数双语 高数双语课件section 9.4 双语 课件 section
    资源描述:

    1、Section 9.4FermatJacobi,Jakob 2Partial Derivatives and Total Differentials of Multivariable Composite FunctionsTheorem are bothSuppose that(,)uu x y and(,)vv x y(,).u vThen the compositedifferentiable at the corresponding point (,),(,)zf u x y v x y(,)x yis also differentiable at the point function

    2、isdifferentiable at the point while the function(,)zf u v(,),x yand its total differential is.zuzvzuzvdzdxdyu xvxu yvy and.v u then the functions u and v have corresponding incrementsProof Let the increments of the variables x and y be and,y x 3Partial Derivatives and Total Differentials of Multivar

    3、iable Composite FunctionsProof(continued)zuzvzuzvdzdxdyu xvxu yvy Since u and v are both differentiable at(,),x y2(),vvvxyoxy 1(),uuuxyoxy Since f is differentiable at the22()().xy where point(,),u vz 22()().zzuvouvuv corresponding4Partial Derivatives and Total Differentials of Multivariable Composi

    4、te FunctionsProof(continued)Then,we compose the functions u and v into the function f and zuzvzuzvzxyu xvxu yvy where 2212()()()().zzooouvuv Now,we need only verify that the a is a higher-order infinitesimalThat is0lim0.2(),vvvxyoxy 1(),uuuxyoxy w.r.t.5Partial Derivatives and Total Differentials of

    5、Multivariable Composite FunctionsProof(continued)Notice thatSince 22222222()()()()()().()()ouvouvuvuv 1,uuxy1|()|ouxuyxy|u Thus then,|u is bounded.|v Similarly,is also bounded.This implies the result.2222()()uvuv is bounded.2212()()()()zzooouvuv 6Partial Derivatives and Total Differentials of Multiv

    6、ariable Composite Functionszuzvzuzvdzdxdyu xvxu yvy By the formula we know that,zzuzvxu xvx .zzuzvyu yvy and12(,),1,2,.,iinuu xxximMore generally,if 12(,)myf u uu are both differentiable,then the composite function is also differentiable,1212nnyyydydxdxdxxxxwhere1212,1,2,.mjjjmjuuuyyyyjnxuxuxux 7Par

    7、tial Derivatives and Total Differentials of Multivariable Composite FunctionsSolutionFindExample(,)zf u v Letwhere is differentiable.,.zzxy(,),zf xy xy(,)zf xy xy is differentiable becauseThe composite function Then,we havevxy uxy andare both differentiable.zx ffyuvfufvuxvxzy fufvuyvyffxuv12 fyf12 f

    8、xf8Partial Derivatives and Total Differentials of Multivariable Composite FunctionsExampleFindLetwhere is differentiable.2(,sin),zf xx Solution 2(,sin)zf xx is differentiable.It is obvious that the function21212()(sin)2cos.dzd xdxffxfxfdxdxdxThen,.dzdxfFinish.9Partial Derivatives and Total Different

    9、ials of Multivariable Composite FunctionsExampleProve thatLetwhere is derivable.22(),uxy Proof 22()uxy as a composite functionRegard the functionfunction composed by 22.zxyand()uz Derivation with respect to x and y respectively gives()2,uzyy ()2,uzxx so that0.uuxyyx0.uuxyyx 2()2()xyzxyz Finish.10Par

    10、tial Derivatives and Total Differentials of Multivariable Composite FunctionsExample Letwhere the second order partial derivatives(,),zf u x y If of the function f are continuous with respect to each variable.,yuxe find 2.zy x We have Solution zx fufuxx12.yf efwe have12(,),(,),gf u x y hfu x yUsing

    11、111312123().yyyyf xefef ef xef2zy x ()ygehy yyghegeyyPartial Derivatives and Total Differentials of Multivariable Composite FunctionsExampleThe second order partial derivatives f,g are continuous with respect to each variable,1)(,),zf u v ux vxy findzx .zy andffyuvfufvuxvxzy fufvuyvy0ffxuv12fyf2xf z

    12、x 1122)(,),sin,zg u x y uxy find2zy x 2.zx y and12Invariance of the total differential formRational operation rules for total differentials2();();1(),0.d uvdudvd uvvduudvudvduudv vvvExample Find().d xyyzxz13Rational operation rules for total differentialsExampleis differentiable,find the partial derivatives of(,)f u vIf the function,.x yzfy x Solution By the invariance of the total differential form we havedz121222111,yffdxffdyyxyx then1221,zyffxyx 12211.zffyyx 12xyf df dyx1222ydxxdyxdyydxffyx

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《高数双语》课件section 9.4.pptx
    链接地址:https://www.163wenku.com/p-5897840.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库