书签 分享 收藏 举报 版权申诉 / 15
上传文档赚钱

类型《高数双语》课件section 3-2.pptx

  • 上传人(卖家):momomo
  • 文档编号:5897839
  • 上传时间:2023-05-14
  • 格式:PPTX
  • 页数:15
  • 大小:410.98KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《《高数双语》课件section 3-2.pptx》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高数双语 高数双语课件section 3_2 双语 课件 section _2
    资源描述:

    1、L Hospitals Rules1L Hospitals Rules2LHospital,Guillaumede(1661-1704)French mathematician 0(,)U x (L Hospitals rules I 洛必达法则洛必达法则)()0g x and.Suppose that f,g,are both differentiable in 00lim()lim()0;xxxxg xf x(1)(A is a finite number or infinity),If the following conditions hold0()lim()xxfxAg x (2)00

    2、()()limlim.()()xxxxf xfxAg xg x then0 xx 0 xx()x This rule is also valid for,and.L Hospitals Rules300(),(,),()0,f xxU xF xxx 00(),(,),()0,g xxU xG xxx Proof0 xx discontinuous at.We define and 00lim()lim()0 xxxxf xg xSince,when f(x)and(or)g(x)are0(,)xU x Choose any point.It is easy to see that the co

    3、nditions of theHence 00()()()()()()()()()()F xF xF xFfG xG xG xGg ,Cauchy theorem are all satisfied for the functions F(x)and G(x)on the0 xinterval between the points and x.where lies between 0 xx and.L Hospitals Rules40 xx0 x 0()lim()xxfxAg x Let,so that,and the assumption means0()lim()xxfAg .Proof

    4、(continued)00()()()()()()()()()()F xF xF xFfG xG xG xGg So,000()()()limlimlim()()()xxxxxxf xF xfAg xG xg .Finish.L Hospitals Rules532000sin1 cossin1limlimlim663xxxxxxxxxxSolutionsinxx 3.x and By LHospitals rules,Finish.30sinlim.xxxx Find It is easy to check that the conditions of LHospitals rulesare

    5、 satisfied for the function we haveL Hospitals Rules6111lnlimlim111xxxxx。Solutionlnx1.x and By LHospitals rules,Finish.1lnlim.1xxx Find It is easy to check that the conditions of LHospitals rulesare satisfied for the function we haveL Hospitals Rules730.tanlimxxxx Find 23200tansec1limlim3xxxxxxx 202

    6、sectanlim6xxxx 011.33tanlimxxxSolutionFinish.L Hospitals Rules80(,)U x (L Hospitals rules II)()0.g x and Suppose that f,g are bothIf the following conditions hold(1)00lim()lim(),xxxxg xf xA(is a finite number or infinity),0()lim()xxfxAg x (2)00()()limlim.()()xxxxf xfxAg xg x then0 xx 0 xx()x This ru

    7、le is also valid for,and.differentiable in L Hospitals Rules911loglnlimlimaaaxxxxaxax 11limlnaxaax loglim(1).aaxxax Find lim(1,0).xxxaa Find 0.limxxxa 1limlnxxxaa L(1)(1)lim(ln)nnnxnxnxaa L222(1)lim(ln)xxxaa SolutionSolution11(1)(1)()lim(ln)nxnnxnaax L0.L Hospitals Rules10sin1coslim()lim()1xxxxxx si

    8、nsinlim()lim(1)1.xxxxxxx A(is a finite number or infinity)()lim()fxAg x sinlim().xxxx Find SolutionNoteDoes not exist.Indeterminate Forms11Besides the types 00 and ,there are five other types of indeterminate form,namely ,0,1,00,0.For the type and 0,we can always transform them to indeterminate form

    9、s of type 00 and and then calculate them;for 1,00 and 0,we can transform them to the type 0.We will give some examples to show how to do with these types of indeterminate form.Indeterminate Forms12sectanxx 1sincoscosxxx1sincosxx 2coslimsinxxx 2lim(sectan).xxx Find )(2x 221sinlim(sectan)limcosxxxxxx

    10、Solution00,this becomes the type as.By LHospitals rule we haveFinish.1sinsectancosxxxx Since 0 Indeterminate Forms1300lnlimlnlimxxxxxx 0limxx 0.101limxxx 0limln(0).xxx Find Solutionwe haveFinish.0 ().lnlnxxxx Since ,and this type is.By LHospitals ruleIndeterminate Forms1401.e20limsinxxx 00lnsinlimln

    11、sinlim1xxxxxx 02cossinlim1xxxx 0limlnsin0lim(sin)xxxxxxe Find 0.lim(sin)xxx lnsin(sin)xxxxe Solution Since we haveThus,Finish.00()lnsinxx0,,and is of type 0.Indeterminate Forms1501limln(1)xxx 01lim1xx 1.ee1()10lim(1).xxx Find 11ln(1)(1)xxxxe 1.011limln(1)0lim(1)xxxxxxe Solution Since,and we haveThus,Finish.001ln(1)xx is of type ,

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《高数双语》课件section 3-2.pptx
    链接地址:https://www.163wenku.com/p-5897839.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库