书签 分享 收藏 举报 版权申诉 / 16
上传文档赚钱

类型《高数双语》课件section 5-3.pptx

  • 上传人(卖家):momomo
  • 文档编号:5897834
  • 上传时间:2023-05-14
  • 格式:PPTX
  • 页数:16
  • 大小:420.60KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《《高数双语》课件section 5-3.pptx》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高数双语 高数双语课件section 5_3 双语 课件 section _3
    资源描述:

    1、Integration by substitution and by parts in definite integrals1Integration by Substitutions for definite integrals2,()baf x dx(),()F xCf x dx When we want to evaluate the value of a definite integral if we can find the corresponding indefinite integral then we can use the Newton-Leibniz formula to o

    2、btain the value immediately.()()()()()dbbbaaaf x dxF bF aF xF x Integration by Substitutions for definite integrals3(Integration by substitution for definite integrals)Suppose that the function x=(t)is continuously differentiable on the interval,()=a,()=b,and that f is continuous in the range of ,I.

    3、Then()()()baf x dxftt dt Integration by Substitutions for definite integrals4Proof()()()baf x dxF bF a ()()(),dFtfttdt ()()()ftt dtFt Let F be an antiderivative of f on the interval I,thenSince we haveTherefore,the formula holds.()()FF ()()F bF aIntegration by Substitutions for definite integrals5si

    4、n,xt cos.dxtdt 0t 0;x 2t 1;x 1222001cosx dxtdt 1201.x dx Evaluate Let Then when when thus by the formula,we haveSolution2011sin222tt.4 Integration by Substitutions for definite integrals60202sinsin22nnxdxt dt 2200sincosnnxdxxdx Prove (n is any positive integer).Proof02cosntdt 20cosntdt 20cos.nxdx In

    5、tegration by Substitutions for definite integrals7 Find 2001sinlimd.xxxtttx Solution Let,xtu then,utx dd.utx 0t 0;u2.uxtx Then0sindxxttt 20sinxu duuxx 20sindxuuu 2022000sind1sinlimdlimxxxxuuxtutxtx So 00220sin2lim2xxxxx 1.Integration by Parts for indefinite integrals 8When u and v are differentiable

    6、 functions of x,the Product Rule for differentiation tell us that()ddvduuvuvdxdxdxIntegrating both sides with respect to x and rearranging leads to the integral equation()dvdduudxuvdxvdxdxdxdx.duuvvdxdx Integration by Parts for indefinite integrals When u and v are differentiable functions of x on t

    7、he interval ,a b.Then bbbaaaudvuvvdu 92.dxtdt 42200022xttedxetdttdext Let,then 2xt,Thus Solution 22002tttee dt 22(1).eExample Evaluate 40.xedx Integration by Parts for indefinite integrals 10 Evaluate 120arcsin.xdx Solution Letarcsin,ux,dvdx then2,1dxdux ,vx 120arcsin xdx 120arcsinxx 12201xdxx 12 6

    8、1222011(1)21dxx 12 12201x31.122 bbbaaaudvuvvduIntegration by Parts for indefinite integrals bbbaaaudvuvvdu11 Evaluate 40.1 cos2xdxx Solution21cos22cos,xxQ401cos2xdxx 4202cosxdxx 40tan2xdx 401tan2xx 401tan2xdx 401lnsec82x ln2.84 Integration by Parts for indefinite integrals bbbaaaudvuvvdu12 Evaluate

    9、120ln(1).(2)xdxx Solution120ln(1)(2)xdxx 101ln(1)2x dx 10ln(1)2xx 101ln(1)2dxx ln23 101121dxxx 1112xx 10ln2ln(1)ln(2)3xx 5ln2ln3.3Integration by Parts for indefinite integrals 13201)sinnnIxdx bbbaaaudvuvvdu Compute the following integrals:4222001)sin;2)sincos.nnIxdxxxdx Solution(1)20sin(cos)nxdx 222

    10、0(1)(1sin)sinnnxxdx 22200(1)sin(1)sinnnnxdxnxdx 2220(1)cossinnnxxdx 2(1)(1).nnnInI 1222200sincos(1)cossinnnxxnxxdx 21(2,3,)nnnIInn Integration by Parts for indefinite integrals 144222001)sin;2)sincos.nnIxdxxxdx Solution(continued)bbbaaaudvuvvdu241132nnnnnnIIInnn 113 2,2 3nnInn 241132nnnnnnIIInnn If

    11、n is odd013 1.2 2nnInn If n is even210sin1,Ixdx 200,2Idx Since134 2,ifis odd;25 3133 1,ifis even.24 2 2nnnnnnInnnnn we obtain Compute the following integrals:Integration by Parts for indefinite integrals 15424222002)sincossin(1sin)xxdxxx dx134 2,ifis odd;25 3133 1,ifis even.24 2 2nnnnnnInnnnn Comput

    12、e the following integrals:4222001)sin;2)sincos.nnIxdxxxdx Solution(continued)bbbaaaudvuvvdu462200sinsinxdxxdx3 15 3 14 2 26 4 2 2.32 Quadrature Problems for elementary fundamental functions16By the previous examples,we have seen that quadratures are much more difficult than differentiations.When int

    13、egrands are continuous,their integral must exist,but their computation sometimes requires skill,and sometimes may nor even be expressible by elementary functions.For instance,the integrals:24sin,1xxdxe dxdxxx seems very simple,and the integrands are all continuous.All of these integrals exist,but we can not express them in terms of elementary functions.In general,we have known that for any rational function and any rational trigonometric function,their integrals can be expressed by elementary functions.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《高数双语》课件section 5-3.pptx
    链接地址:https://www.163wenku.com/p-5897834.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库