《高数双语》课件section 5-3.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《高数双语》课件section 5-3.pptx》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高数双语 高数双语课件section 5_3 双语 课件 section _3
- 资源描述:
-
1、Integration by substitution and by parts in definite integrals1Integration by Substitutions for definite integrals2,()baf x dx(),()F xCf x dx When we want to evaluate the value of a definite integral if we can find the corresponding indefinite integral then we can use the Newton-Leibniz formula to o
2、btain the value immediately.()()()()()dbbbaaaf x dxF bF aF xF x Integration by Substitutions for definite integrals3(Integration by substitution for definite integrals)Suppose that the function x=(t)is continuously differentiable on the interval,()=a,()=b,and that f is continuous in the range of ,I.
3、Then()()()baf x dxftt dt Integration by Substitutions for definite integrals4Proof()()()baf x dxF bF a ()()(),dFtfttdt ()()()ftt dtFt Let F be an antiderivative of f on the interval I,thenSince we haveTherefore,the formula holds.()()FF ()()F bF aIntegration by Substitutions for definite integrals5si
4、n,xt cos.dxtdt 0t 0;x 2t 1;x 1222001cosx dxtdt 1201.x dx Evaluate Let Then when when thus by the formula,we haveSolution2011sin222tt.4 Integration by Substitutions for definite integrals60202sinsin22nnxdxt dt 2200sincosnnxdxxdx Prove (n is any positive integer).Proof02cosntdt 20cosntdt 20cos.nxdx In
5、tegration by Substitutions for definite integrals7 Find 2001sinlimd.xxxtttx Solution Let,xtu then,utx dd.utx 0t 0;u2.uxtx Then0sindxxttt 20sinxu duuxx 20sindxuuu 2022000sind1sinlimdlimxxxxuuxtutxtx So 00220sin2lim2xxxxx 1.Integration by Parts for indefinite integrals 8When u and v are differentiable
6、 functions of x,the Product Rule for differentiation tell us that()ddvduuvuvdxdxdxIntegrating both sides with respect to x and rearranging leads to the integral equation()dvdduudxuvdxvdxdxdxdx.duuvvdxdx Integration by Parts for indefinite integrals When u and v are differentiable functions of x on t
展开阅读全文