书签 分享 收藏 举报 版权申诉 / 17
上传文档赚钱

类型《高数双语》课件section 4-4.pptx

  • 上传人(卖家):momomo
  • 文档编号:5897833
  • 上传时间:2023-05-14
  • 格式:PPTX
  • 页数:17
  • 大小:256.72KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《《高数双语》课件section 4-4.pptx》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高数双语 高数双语课件section 4_4 双语 课件 section _4
    资源描述:

    1、Integration of Rational Fractions1Rational Functions 2Every rational function may be represented in the form of a rational fraction:10111011()(,)()nnnnmmmma xa xaxaP xm nNQ xb xb xbxbNote We assume these polynomials do not have common roots.Note If n m,the faction is called proper rational fraction

    2、真真分式分式,otherwise,i.e.n m,the faction is called improper rational fraction 假分式假分式。Integration of Proper Rational Fraction3(Types of partial fraction)Proper rational fraction of the form:I.(A and a are constants);II.III.(the roots of the denominator are complex);IV.the roots of the denominator are com

    3、plex)are called the partial fractions of types I,II,III and IV.Axa2(,);()kAkNkxa2AxBxpxq22(,()kAxBkNkxpxqIntegration of Proper Rational Fraction4Note If the denominator 22()()()()(),Q xxaxbxpxqxrxsthen 1211211122221211222212()()()()()()()()()()AAAP xQ xxaxaxaBBBxbxbxbM xNM xNM xNxpxqxpxqxpxqR xSR xS

    4、R xSxrxsxrxsxrxs Integration of Proper Rational Fraction5 Represent the proper rational fraction in the form of a sum of partial rational fraction.2356xxxSolution2335632()()xxxxxx235632,xABxxxxAssumethen233()().A xB xxSo,1233.ABABSolving the system we find65,.AB Therefore23655632.xxxxxFinish.Integra

    5、tion of Proper Rational Fraction6 Represent the proper rational fraction in the form of a sum of partial rational fraction.43212221xxxxSolution4322212221111,()ABCxDxxxxxxxAssumethen22211111()()()()().A xB xxCxDxSo,120201,BCABCDBCDABDi.e.,Therefore432221112221212121.()()()xxxxxxxxFinish.1 21 21 20.AB

    6、CD Integration of Proper Rational Fraction7 I.(A and a are constants);Axaln.AdxAxaCxa11().()()()kkkAAdxAxadxCxakxa II.2(,);()kAkNkxaIntegration of Proper Rational Fraction8 III.2AxBxpxq222222222222222222422242224242244224()()(/)(/)()()(/)/()()()()()/()()ln()arctau xpAxBAxBdxdxxpxqxpqpA xpBApdxxpqpA

    7、xpBApdxdxxpqpxpqpAd uBApduuqpuqpABApxpxqqp 224n.xpCqpIntegration of Proper Rational Fraction9 IV.2()kAxBxpxq2211,()()()kkkAxBdxICxpxqkxpxqwhere12221221232121142;()()()arctan;(;).kkktkIImktmmktppImqtxmmIntegration of Proper Rational Fraction10Compute the following integrals:2243223543131);2);256123);

    8、4);22212385);6).3xdxdxxxxxxdxdxxxxxxxxxxdxdxxxx Integration of Proper Rational Fraction11211);2dxxx Solution211131212dxxxdxxx 1ln|1|ln|2|.3xxC11ln.32xCx Integration of Proper Rational Fraction12232)56xdxxx Solution26536235xdxxdxxxx 65326ln|3|5ln|2|.dxdxxxxxCIntegration of Proper Rational Fraction134

    9、3213)2221dxxxxx Solution32422112(1)2(1)2(1)12221xdxxdxxxxxxx 222112(1)2(1)2(1)111ln|1|ln|1|.2(1)24xdxdxdxxxxxxCx Integration of Proper Rational Fraction14224)23xdxxx Solution2221(23)3223223xxxdxxxdxxx 222111(23)322323d xxdxxxxx2221ln(23)32(1)(2)dxxxx 2221(1)ln(23)32(1)(2)d xxxx 2131ln(23)arctan.222x

    10、xxC Integration of Proper Rational Fraction1535)3xdxx Solution32(39)(3)2733xxxxdxdxxx 23227(39)313927ln|3|.32xxdxdxxxxxxC Integration of Proper Rational Fraction1654386)xxdxxx Solution542323338(1)()8xxxxxxxxdxdxxxxxxx228(1)(1)(1)xxxxdxdxx xx2834(1)11xxdxdxdxdxxxx32118ln|3ln|1|4ln|1|.32xxxxxxCQuadrat

    11、ure Problems for elementary fundamental functions17By the previous examples,we have seen that quadratures are much more difficult than differentiations.When integrands are continuous,their integral must exist,but their computation sometimes requires skill,and sometimes may nor even be expressible by

    12、 elementary functions.For instance,the integrals:24sin,1xxdxe dxdxxx seems very simple,and the integrands are all continuous.All of these integrals exist,but we can not express them in terms of elementary functions.In general,we have known that for any rational function and any rational trigonometric function,their integrals can be expressed by elementary functions.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《高数双语》课件section 4-4.pptx
    链接地址:https://www.163wenku.com/p-5897833.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库