《高数双语》课件section 6.6and7.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《高数双语》课件section 6.6and7.pptx》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高数双语 高数双语课件section 6.6and7 双语 课件 section 6.6 and7
- 资源描述:
-
1、Section 7.61General Solution of Higher Order Nonhomogeneous Linear Differential Equations with Variable CoefficientsThe problem to solve a higher order nonhomogeneous lineardifferential equations with variable coefficients is much difficultthan that with constants coefficients.Eulers differential eq
2、uationThe general form of the Eulers differential equation is 11111(),nnnnnnnnd xdxdxta tata xf tdtdtdt are all constants.(1,)ia in where To solve this equation,let ln,t orte then Eulers equation can be changed into differential equation with constants coefficients.2General Solution of Higher Order
3、Nonhomogeneous Linear Differential Equations with Variable CoefficientsExample Find the general solution of the equation 20.t xtxxSolution This is an Euler differential equation.Let ln,t orte so that 222221,1.dxdx ddxdtddtt dd xd xdxddttd 3General Solution of Higher Order Nonhomogeneous Linear Diffe
4、rential Equations with Variable CoefficientsExample Find the solution of 2235ln.x yxyyxxSolution This equation is an Eulers equation,then we let ln.tx ortxe Then dydtydtdx 1,tyx 211ttdtyyyxxdx21().ttyyxSubstitute these back to the original equation,we have 245.tttyyyte4General Solution of Higher Ord
5、er Nonhomogeneous Linear Differential Equations with Variable CoefficientsSolution(continued)The corresponding homogeneous equation is 450.ttyyyIts characteristic equation is2450,and its eigenvalue are 125,1.Therefore,the general solution of the homogeneous equation is512.ttyc ec e 245tttyyyte5Gener
6、al Solution of Higher Order Nonhomogeneous Linear Differential Equations with Variable CoefficientsSolution(continued)Assume that the particular solution of the nonhomogeneous equation is*2(),tyatb ewe have*2()(444).tyeatab and*2()(22)tyeatab Substitute them back into the differential equation with
7、constantsTherefore,we have1,0,9ab coefficients,we have*21.9tyte then 521219tttyc ec ete 52211ln.9cc xxxx245tttyyyte6ReviewStructure of Solutions of Linear Differential EquationsSolution of Higher Order Homogeneous Linear Differential Equations with Constant CoefficientsSolution of Higher Order Nonho
8、mogeneous Linear Differential Equations with Constant Coefficients*Solution of Eulers Differential Equation7Section 7.78Mathematical ModelsMathematical Model is an idealization of the real-world phenomenon and never a completely accurate representation.9Real-world dataModelPredications/explanationsM
9、athematical conclusionsSimplificationAnalysisInterpretationVerificationSome Applications for Differential Equations10In general,the procedures for applying differential equations to solve practical problems are the following:(1)Establish the approximate differential equation and initial conditions u
展开阅读全文