书签 分享 收藏 举报 版权申诉 / 16
上传文档赚钱

类型《高数双语》课件section 6.6and7.pptx

  • 上传人(卖家):momomo
  • 文档编号:5897831
  • 上传时间:2023-05-14
  • 格式:PPTX
  • 页数:16
  • 大小:290.41KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《《高数双语》课件section 6.6and7.pptx》由用户(momomo)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高数双语 高数双语课件section 6.6and7 双语 课件 section 6.6 and7
    资源描述:

    1、Section 7.61General Solution of Higher Order Nonhomogeneous Linear Differential Equations with Variable CoefficientsThe problem to solve a higher order nonhomogeneous lineardifferential equations with variable coefficients is much difficultthan that with constants coefficients.Eulers differential eq

    2、uationThe general form of the Eulers differential equation is 11111(),nnnnnnnnd xdxdxta tata xf tdtdtdt are all constants.(1,)ia in where To solve this equation,let ln,t orte then Eulers equation can be changed into differential equation with constants coefficients.2General Solution of Higher Order

    3、Nonhomogeneous Linear Differential Equations with Variable CoefficientsExample Find the general solution of the equation 20.t xtxxSolution This is an Euler differential equation.Let ln,t orte so that 222221,1.dxdx ddxdtddtt dd xd xdxddttd 3General Solution of Higher Order Nonhomogeneous Linear Diffe

    4、rential Equations with Variable CoefficientsExample Find the solution of 2235ln.x yxyyxxSolution This equation is an Eulers equation,then we let ln.tx ortxe Then dydtydtdx 1,tyx 211ttdtyyyxxdx21().ttyyxSubstitute these back to the original equation,we have 245.tttyyyte4General Solution of Higher Ord

    5、er Nonhomogeneous Linear Differential Equations with Variable CoefficientsSolution(continued)The corresponding homogeneous equation is 450.ttyyyIts characteristic equation is2450,and its eigenvalue are 125,1.Therefore,the general solution of the homogeneous equation is512.ttyc ec e 245tttyyyte5Gener

    6、al Solution of Higher Order Nonhomogeneous Linear Differential Equations with Variable CoefficientsSolution(continued)Assume that the particular solution of the nonhomogeneous equation is*2(),tyatb ewe have*2()(444).tyeatab and*2()(22)tyeatab Substitute them back into the differential equation with

    7、constantsTherefore,we have1,0,9ab coefficients,we have*21.9tyte then 521219tttyc ec ete 52211ln.9cc xxxx245tttyyyte6ReviewStructure of Solutions of Linear Differential EquationsSolution of Higher Order Homogeneous Linear Differential Equations with Constant CoefficientsSolution of Higher Order Nonho

    8、mogeneous Linear Differential Equations with Constant Coefficients*Solution of Eulers Differential Equation7Section 7.78Mathematical ModelsMathematical Model is an idealization of the real-world phenomenon and never a completely accurate representation.9Real-world dataModelPredications/explanationsM

    9、athematical conclusionsSimplificationAnalysisInterpretationVerificationSome Applications for Differential Equations10In general,the procedures for applying differential equations to solve practical problems are the following:(1)Establish the approximate differential equation and initial conditions u

    10、sing knowledge of mathematics and related sciences;(2)Find the general solution of the equation and then determine the desired particular solution using the initial conditions.Example Find the equation of the curve such that the distancebetween any point P on the curve and the origin is equal to the

    11、 distance between the point P and the point Q which is an intersection point of the tangent of the curve at point P and the x-axis.Some Applications for Differential Equations11O(,0)Q X(,)P x yxySolution Suppose that P(x,y)is anypoint on the desired curve y=y(x).By theassumption we know that the con

    12、ditiondetermining the curve is.OPPQ To find the length|PQ|we first write downthe equation of the tangent PQ as follows:(),Yyy Xx where(X,Y)is the variable point on the tangent.Let Y=0.The abscissa of the point Q is,yXxy so that2222|().yPQxXyyy Some Applications for Differential Equations12Thus,the c

    13、oordinate representations of the condition is2222.yxyyy The general solution is easily obtained as follows:yCx or.Cyx Obviously,there are two families of curves both satisfying the requirement.One is a family of hyperbolas;Cyx the other is a family of rays y=Cx.Finish.Some Applications for Different

    14、ial Equations13When an atom emits some of its radioactive mass,the remainder of the atom becomes an atom of some new element.This process of radiation and change is radioactive decay.Radioactive carbon-14 decays into nitrogen.Radium,through a number of intervening radioactive steps,decays into lead.

    15、Experiments have shown that at any given time,the rate at which a radioactive element decays is approximately proportional to the number of radioactive nuclei present.Thus,the decay of a radioactive element is described by the equation dx/dt=-kx,k 0.If x(0)=x0,the number left at any later time t wil

    16、l be0(),0.ktx tx ek Some Applications for Differential Equations14The half-life of a radioactive element is the time required for half of the Radioactive nuclei present in a sample to decay.The next example show the surprising fact that the half-life is a constant that depends only on the radioactiv

    17、e substance and not on the number of radioactive nuclei present in the sample.ExampleFinding kSuppose that the half-life of a radioactive substance is T.Then we have the following equation001.2kTx ex Some Applications for Differential Equations15Solve Algebraically121ln211ln2ln2kTekTkTT Take ln of b

    18、oth sides.Divide by y01lnlnaaFinish.Scientists who do carbon-14 dating use 5568 years for its half-life.We have k=(ln 2)/5568.Some Applications for Differential Equations16Example Using Carbon-14 to Date000()1()lnln.ln2()ktx tx exx tTtkxx t 0How to find?()xx t(0)(0)Since()(),(0)(0),we have.()()xxx tkx txkxx tx t

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《高数双语》课件section 6.6and7.pptx
    链接地址:https://www.163wenku.com/p-5897831.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库