高考数学试题分类汇编-数列(共46页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高考数学试题分类汇编-数列(共46页).doc》由用户(清风明月心)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学试题 分类 汇编 数列 46 下载 _其它资料_高考专区_数学_高中
- 资源描述:
-
1、2009年高考数学试题分类汇编数列一、选择题1.(2009年广东卷文)已知等比数列的公比为正数,且=2,=1,则= A. B. C. D.2 【答案】B【解析】设公比为,由已知得,即,又因为等比数列的公比为正数,所以,故,选B2.(2009广东卷理)已知等比数列满足,且,则当时, A. B. C. D. 【解析】由得,则, ,选C. 3.(2009安徽卷文)已知为等差数列,则等于A. -1 B. 1 C. 3 D.7【解析】即同理可得公差.选B。【答案】B4.(2009江西卷文)公差不为零的等差数列的前项和为.若是的等比中项, ,则等于 A. 18 B. 24 C. 60 D. 90 . 答案
2、:C【解析】由得得,再由得 则,所以,.故选C5.(2009湖南卷文)设是等差数列的前n项和,已知,则等于【 C 】A13 B35 C49 D 63 解: 故选C.或由, 所以故选C.6.(2009福建卷理)等差数列的前n项和为,且 =6,=4, 则公差d等于A1 B C.- 2 D 3【答案】:C解析且.故选C . 7.(2009辽宁卷文)已知为等差数列,且21, 0,则公差d(A)2 (B) (C) (D)2【解析】a72a4a34d2(a3d)2d1 d【答案】B8.(2009辽宁卷理)设等比数列 的前n 项和为 ,若 =3 ,则 = (A) 2 (B) (C) (D)3【解析】设公比为
3、q ,则1q33 q32 于是 . 【答案】B9.(2009宁夏海南卷理)等比数列的前n项和为,且4,2,成等差数列。若=1,则=(A)7 (B)8 (3)15 (4)16解析:4,2,成等差数列,,选C.10.(2009四川卷文)等差数列的公差不为零,首项1,是和的等比中项,则数列的前10项之和是 A. 90 B. 100 C. 145 D. 190【答案】B【解析】设公差为,则.0,解得2,10011.(2009湖北卷文)设记不超过的最大整数为,令=-,则,,A.是等差数列但不是等比数列 B.是等比数列但不是等差数列C.既是等差数列又是等比数列 D.既不是等差数列也不是等比数列【答案】B【
4、解析】可分别求得,.则等比数列性质易得三者构成等比数列.12.(2009湖北卷文)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如: . 他们研究过图1中的1,3,6,10,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16这样的数成为正方形数。下列数中及时三角形数又是正方形数的是A.289 B.1024 C.1225 D.1378【答案】C【解析】由图形可得三角形数构成的数列通项,同理可得正方形数构成的数列通项,则由可排除A、D,又由知必为奇数,故选C.13.(2009宁夏海南卷文)等差数列的前n项和为,已知,,则(A)38 (B)20 (C)10 (D)9
5、 【答案】C【解析】因为是等差数列,所以,由,得:20,所以,2,又,即38,即(2m1)238,解得m10,故选.C。14.(2009重庆卷文)设是公差不为0的等差数列,且成等比数列,则的前项和=( ) A B CD【答案】A解析设数列的公差为,则根据题意得,解得或(舍去),所以数列的前项和15.(2009安徽卷理)已知为等差数列,+=105,=99,以表示的前项和,则使得达到最大值的是 (A)21 (B)20 (C)19 (D) 18 解析:由+=105得即,由=99得即 ,由得,选B16.(2009江西卷理)数列的通项,其前项和为,则为A B C D答案:A【解析】由于以3 为周期,故故
6、选A17.(2009四川卷文)等差数列的公差不为零,首项1,是和的等比中项,则数列的前10项之和是 A. 90 B. 100 C. 145 D. 190 . 【答案】B【解析】设公差为,则.0,解得2,100二、填空题1.(2009全国卷理)设等差数列的前项和为,若,则= 。解: 是等差数列,由,得. 2.(2009浙江理)设等比数列的公比,前项和为,则 答案:15【解析】对于3.(2009浙江文)设等比数列的公比,前项和为,则 【命题意图】此题主要考查了数列中的等比数列的通项和求和公式,通过对数列知识点的考查充分体现了通项公式和前项和的知识联系【解析】对于 . 4.(2009浙江文)设等差数
7、列的前项和为,则,成等差数列类比以上结论有:设等比数列的前项积为,则, , ,成等比数列答案: 【命题意图】此题是一个数列与类比推理结合的问题,既考查了数列中等差数列和等比数列的知识,也考查了通过已知条件进行类比推理的方法和能力. 【解析】对于等比数列,通过类比,有等比数列的前项积为,则,成等比数列5.(2009北京文)若数列满足:,则 ;前8项的和 .(用数字作答).w【解析】本题主要考查简单的递推数列以及数列的求和问题.m 属于基础知识、基本运算的考查.,易知,应填255.6.(2009北京理)已知数列满足:则_;=_.【答案】1,0【解析】本题主要考查周期数列等基础知识.属于创新题型.依
8、题意,得,. . 应填1,0.7.(2009江苏卷)设是公比为的等比数列,令,若数列有连续四项在集合中,则= . 【解析】 考查等价转化能力和分析问题的能力。等比数列的通项。 有连续四项在集合,四项成等比数列,公比为,= -98.(2009山东卷文)在等差数列中,则.【解析】:设等差数列的公差为,则由已知得解得,所以. 答案:13.【命题立意】:本题考查等差数列的通项公式以及基本计算.9.(2009全国卷文)设等比数列的前n项和为。若,则= 答案:3解析:本题考查等比数列的性质及求和运算,由得q3=3故a4=a1q3=3。10.(2009湖北卷理)已知数列满足:(m为正整数),若,则m所有可能
9、的取值为_。. 11.【答案】4 5 32【解析】(1)若为偶数,则为偶, 故当仍为偶数时, 故当为奇数时,故得m=4。(2)若为奇数,则为偶数,故必为偶数,所以=1可得m=512.(2009全国卷理)设等差数列的前项和为,若则 9 . 解:为等差数列,13.(2009辽宁卷理)等差数列的前项和为,且则 【解析】Snna1n(n1)d . S55a110d,S33a13d 6S55S330a160d(15a115d)15a145d15(a13d)15a4【答案】14.(2009宁夏海南卷理)等差数列前n项和为。已知+-=0,=38,则m=_解析:由+-=0得到。答案1015.(2009陕西卷文
10、)设等差数列的前n项和为,若,则 . . 答案:2n解析:由可得的公差d=2,首项=2,故易得2n.16.(2009陕西卷理)设等差数列的前n项和为,若,则 .答案:117.(2009宁夏海南卷文)等比数列的公比, 已知=1,则的前4项和= . 【答案】【解析】由得:,即,解得:q2,又=1,所以,。18.(2009湖南卷理)将正ABC分割成(2,nN)个全等的小正三角形(图2,图3分别给出了n=2,3的情形),在每个三角形的顶点各放置一个数,使位于ABC的三遍及平行于某边的任一直线上的数(当数的个数不少于3时)都分别一次成等差数列,若顶点A ,B ,C处的三个数互不相同且和为1,记所有顶点上
11、的数之和为f(n),则有f(2)=2,f(3)= ,f(n)= (n+1)(n+2) . 【答案】:【解析】当n=3时,如图所示分别设各顶点的数用小写字母表示,即由条件知 . 即进一步可求得。由上知中有三个数,中 有6个数,中共有10个数相加 ,中有15个数相加.,若中有个数相加,可得中有个数相加,且由可得所以=19.(2009重庆卷理)设,则数列的通项公式= . 【答案】:2n+1【解析】由条件得且所以数列是首项为4,公比为2的等比数列,则三、解答题1.(2009年广东卷文)(本小题满分14分)已知点(1,)是函数且)的图象上一点,等比数列的前项和为,数列的首项为,且前项和满足=+().(1
12、)求数列和的通项公式;(2)若数列前项和为,问的最小正整数是多少? . 【解析】(1), , .又数列成等比数列, ,所以 ;又公比,所以 ; 又, ;数列构成一个首相为1公差为1的等差数列, , 当, ;();(2) ; 由得,满足的最小正整数为112.2.(2009全国卷理)(本小题满分12分)(注意:在试题卷上作答无效)在数列中, (I)设,求数列的通项公式 (II)求数列的前项和分析:(I)由已知有 利用累差迭加即可求出数列的通项公式: ()(II)由(I)知,=而,又是一个典型的错位相减法模型,易得 =评析:09年高考理科数学全国(一)试题将数列题前置,考查构造新数列和利用错位相减法
13、求前n项和,一改往年的将数列结合不等式放缩法问题作为押轴题的命题模式。具有让考生和一线教师重视教材和基础知识、基本方法基本技能,重视两纲的导向作用。也可看出命题人在有意识降低难度和求变的良苦用心。3.(2009浙江文)(本题满分14分)设为数列的前项和,其中是常数 (I) 求及; (II)若对于任意的,成等比数列,求的值解析:()当, () 经验,()式成立, ()成等比数列,即,整理得:,对任意的成立, 4.(2009北京文)(本小题共13分)设数列的通项公式为. 数列定义如下:对于正整数m,是使得不等式成立的所有n中的最小值.()若,求;()若,求数列的前2m项和公式;()是否存在p和q,
14、使得?如果存在,求p和q的取值范围;如果不存在,请说明理由.【解析】本题主要考查数列的概念、数列的基本性质,考查运算能力、推理论证能力、分类讨论等数学思想方法本题是数列与不等式综合的较难层次题.()由题意,得,解,得. . 成立的所有n中的最小整数为7,即. ()由题意,得,对于正整数,由,得.根据的定义可知当时,;当时,. .()假设存在p和q满足条件,由不等式及得.,根据的定义可知,对于任意的正整数m 都有,即对任意的正整数m都成立. 当(或)时,得(或), 这与上述结论矛盾! 当,即时,得,解得. 存在p和q,使得;p和q的取值范围分别是,. . 5.(2009北京理)(本小题共13分)
15、 已知数集具有性质;对任意的,与两数中至少有一个属于.()分别判断数集与是否具有性质,并说明理由;()证明:,且;()证明:当时,成等比数列.【解析】本题主要考查集合、等比数列的性质,考查运算能力、推理论证能力、分分类讨论等数学思想方法本题是数列与不等式的综合题,属于较难层次题.()由于与均不属于数集,该数集不具有性质P. 由于都属于数集, 该数集具有性质P. ()具有性质P,与中至少有一个属于A,由于,故. . 从而,., ,故. 由A具有性质P可知.又,从而,. . ()由()知,当时,有,即, ,由A具有性质P可知. ,得,且,即是首项为1,公比为成等比数列.k.s.5.6.(2009江
16、苏卷)(本小题满分14分) 设是公差不为零的等差数列,为其前项和,满足。(1)求数列的通项公式及前项和; (2)试求所有的正整数,使得为数列中的项。 【解析】 本小题主要考查等差数列的通项、求和的有关知识,考查运算和求解的能力。满分14分。(1)设公差为,则,由性质得,因为,所以,即,又由得,解得,,(2) (方法一)=,设, 则=, 所以为8的约数(方法二)因为为数列中的项,故为整数,又由(1)知:为奇数,所以经检验,符合题意的正整数只有。. 7.(2009江苏卷)(本题满分10分)对于正整数2,用表示关于的一元二次方程有实数根的有序数组的组数,其中(和可以相等);对于随机选取的(和可以相等
17、),记为关于的一元二次方程有实数根的概率。(1)求和;(2)求证:对任意正整数2,有.【解析】 必做题本小题主要考查概率的基本知识和记数原理,考查探究能力。满分10分。 . 8.(2009山东卷理)(本小题满分12分)等比数列的前n项和为, 已知对任意的 ,点,均在函数且均为常数)的图像上.(1)求r的值; (11)当b=2时,记 . 证明:对任意的 ,不等式成立解:因为对任意的,点,均在函数且均为常数的图像上.所以得,当时,当时,又因为为等比数列,所以,公比为,(2)当b=2时,, 则,所以 . 下面用数学归纳法证明不等式成立. 当时,左边=,右边=,因为,所以不等式成立. 假设当时不等式成
展开阅读全文