(典型题)高中必修一数学上期末模拟试题带答案.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(典型题)高中必修一数学上期末模拟试题带答案.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 典型题 典型 高中 必修 数学 上期 模拟 试题 答案 下载 _考试试卷_数学_高中
- 资源描述:
-
1、【典型题】高中必修一数学上期末模拟试题带答案一、选择题1设均为正数,且,则( )ABCD2已知函数;则的图像大致为( )ABCD3设,则的大小关系是( )A B C D 4函数ya|x|(a1)的图像是()ABCD5若是的增函数,则的取值范围是( )ABCD6设函数的定义域为R,满足,且当时,.若对任意,都有,则m的取值范围是ABCD7已知函数满足,若方程有个不同的实数根(),则( )ABCD8用二分法求方程的近似解,求得的部分函数值数据如下表所示:121.51.6251.751.8751.8125-63-2.625-1.459-0.141.34180.5793则当精确度为0.1时,方程的近似
2、解可取为ABCD9已知定义在上的奇函数满足:,且,若函数有且只有唯一的零点,则( )A1B-1C-3D310定义在上的奇函数,当时,则不等式的解集为ABCD11偶函数满足,且当时,若函数有且仅有三个零点,则实数的取值范围是( )ABCD12对任意实数,规定取,三个值中的最小值,则( )A无最大值,无最小值B有最大值2,最小值1C有最大值1,无最小值D有最大值2,无最小值二、填空题13已知函数若关于的方程,有两个不同的实根,则实数的取值范围是_14已知函数的值域为,则实数的值为_15是上的奇函数且满足,若时,则在上的解析式是_16若函数f(x)是定义在R上的偶函数,在(,0上是减函数,且f(2)
3、0,则使得f(x)0的x的取值范围是_17已知函数满足对任意的都有成立,则 18,则a,b,c从小到大的关系是_.19若函数是奇函数,则实数的值是_.20已知函数,若,则实数_.三、解答题21已知函数.(1)若在上单调递减,求实数的取值范围; (2)当时,解不等式.22已知函数.(1)若对任意,不等式恒成立,求的取值范围.(2)讨论零点的个数.23已知函数是奇函数.(1)求a的值;(2)求解不等式;(3)当时,恒成立,求实数t的取值范围.24已知(,且).(1)当(其中,且t为常数)时,是否存在最小值,如果存在,求出最小值;如果不存在,请说明理由;(2)当时,求满足不等式的实数x的取值范围.2
4、5计算或化简:(1);(2).26已知函数.(1)若在轴正半轴上有两个不同的零点,求实数的取值范围;(2)当时,恒成立,求实数的取值范围.【参考答案】*试卷处理标记,请不要删除一、选择题1A解析:A【解析】试题分析:在同一坐标系中分别画出,的图象,与的交点的横坐标为,与的图象的交点的横坐标为,与的图象的交点的横坐标为,从图象可以看出考点:指数函数、对数函数图象和性质的应用【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解2B解析:B【解析】试题分析:设,则,在上为增函数,在上为减函数,得或均有排除选项
5、A,C,又中,,得且,故排除D.综上,符合的只有选项B.故选B.考点:1、函数图象;2、对数函数的性质.3A解析:A【解析】【分析】根据指数幂与对数式的化简运算,结合函数图像即可比较大小.【详解】因为,令,函数图像如下图所示:则,所以当时, ,即 ,则,所以,即综上可知, 故选:A【点睛】本题考查了指数函数、对数函数与幂函数大小的比较,因为函数值都大于1,需借助函数图像及不等式性质比较大小,属于中档题.4B解析:B【解析】因为,所以,且在上曲线向下弯曲的单调递增函数,应选答案B5A解析:A【解析】【分析】利用函数是上的增函数,保证每支都是增函数,还要使得两支函数在分界点处的函数值大小,即,然后
6、列不等式可解出实数的取值范围【详解】由于函数是的增函数,则函数在上是增函数,所以,即;且有,即,得,因此,实数的取值范围是,故选A.【点睛】本题考查分段函数的单调性与参数,在求解分段函数的单调性时,要注意以下两点:(1)确保每支函数的单调性和原函数的单调性一致;(2)结合图象确保各支函数在分界点处函数值的大小关系6B解析:B【解析】【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决【详解】时,即右移1个单位,图像变为原来的2倍如图所示:当时,令,整理得:,(舍),时,成立,即,故选B【点睛】易错警示:图像解析式求解过程容易求反
7、,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力7C解析:C【解析】【分析】函数和都关于对称,所有的所有零点都关于对称,根据对称性计算的值.【详解】,关于对称,而函数也关于对称,的所有零点关于对称,的个不同的实数根(),有1011组关于对称,.故选:C【点睛】本题考查根据对称性计算零点之和,重点考查函数的对称性,属于中档题型.8C解析:C【解析】【分析】利用零点存在定理和精确度可判断出方程的近似解.【详解】根据表中数据可知,由精确度为可知,故方程的一个近似解为,选C.【点睛】不可解方程的近似解应该通过零点存在定理来
8、寻找,零点的寻找依据二分法(即每次取区间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终零点所在区间的端点的近似值相同,则近似值即为所求的近似解.9C解析:C【解析】【分析】由结合为奇函数可得为周期为4的周期函数,则,要使函数有且只有唯一的零点,即只有唯一解,结合图像可得,即可得到答案【详解】为定义在上的奇函数,又,在上为周期函数,周期为4,函数有且只有唯一的零点,即只有唯一解,令 ,则,所以为函数减区间,为函数增区间,令,则为余弦函数,由此可得函数与函数的大致图像如下:由图分析要使函数与函数只有唯一交点,则,解得 ,故答案选C【点睛】本题主要考查奇函数、周期函数的
9、性质以及函数的零点问题,解题的关键是周期函数的判定以及函数唯一零点的条件,属于中档题10B解析:B【解析】【分析】当时,为单调增函数,且,则的解集为,再结合为奇函数,所以不等式的解集为【详解】当时,所以在上单调递增,因为,所以当时,等价于,即,因为是定义在上的奇函数,所以 时,在上单调递增,且,所以等价于,即,所以不等式的解集为【点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题应注意奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单调性相反11D解析:D【解析】试题分析:由,可知函数图像关于对称,又因为为偶函数,所以函数图像关于轴对称.所以函数的周期为2,要使函数有且仅有三个
展开阅读全文