书签 分享 收藏 举报 版权申诉 / 19
上传文档赚钱

类型(典型题)高一数学下期末试卷(带答案).doc

  • 上传人(卖家):刘殿科
  • 文档编号:5895676
  • 上传时间:2023-05-14
  • 格式:DOC
  • 页数:19
  • 大小:1.90MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(典型题)高一数学下期末试卷(带答案).doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    典型题 典型 数学 期末试卷 答案 下载 _考试试卷_数学_高中
    资源描述:

    1、【典型题】高一数学下期末试卷(带答案)一、选择题1已知是公差为的等差数列,前项和是,若,则( )A,B,C,D,2已知向量,若与的夹角为,则( )A2BCD13如图,在中,已知,则A-45B13C-13D-374某程序框图如图所示,若输出的S=57,则判断框内为Ak4?Bk5?Ck6?Dk7?5在中,角,所对的边为,且为锐角,若,则( )ABCD6已知定义在R上的偶函数f(x)满足f(x-4)=f(x),且在区间0,2上f(x)=x,若关于x的方程f(x)=loga|x|有六个不同的根,则a的范围为()ABCD(2,4)7已知函数y=f(x)定义域是-2,3,则y=f(2x-1)的定义域是()

    2、ABCD8是边长为的等边三角形,已知向量,满足,则下列结论正确的是( )ABCD9设函数f(x)=cos(x+),则下列结论错误的是Af(x)的一个周期为2By=f(x)的图像关于直线x=对称Cf(x+)的一个零点为x=Df(x)在(,)单调递减10已知函数在上单调递增,则实数的取值范围是ABCD11已知二项式的展开式中第2项与第3项的二项式系数之比是25,则的系数为( )A14BC240D12如图,在中, ,是上的一点,若,则实数的值为( ) ABCD二、填空题13在 中,若 , ,则 等于_14_15若,则_16已知抛物线的准线与圆相切,则的值为_17已知数列为正项的递增等比数列,记数列的

    3、前n项和为,则使不等式成立的最大正整数n的值是_18函数的图象可由函数的图象至少向右平移_个长度单位得到。19已知圆的方程为x2+y26x8y0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为 20已知函数,若,则a的值是_.三、解答题21某高校在2012年的自主招生考试成绩中随机抽取名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示组号分组频数频率第1组5第2组第3组30第4组20第5组10(1)请先求出频率分布表中位置的相应数据,再完成频率分布直方图;(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样抽取6名学生进入第二轮面试,求第

    4、3、4、5组每组各抽取多少名学生进入第二轮面试;(3)在(2)的前提下,学校决定在名学生中随机抽取名学生接受考官进行面试,求:第组至少有一名学生被考官面试的概率22已知直线且(1)求直线之间的距离;(2)已知圆C与直线相切于点A,且点A的横坐标为,若圆心C在直线上,求圆C的标准方程23已知函数=x+1x2.(1)求不等式1的解集;(2)若不等式x2x +m的解集非空,求实数m的取值范围.24已知矩形ABCD的两条对角线相交于点,AB边所在直线的方程为,点在AD边所在直线上.(1)求AD边所在直线的方程;(2)求矩形ABCD外接圆的方程.25在 中, , , 分别是角 , , 的对边, , .(

    5、1)求 的面积;(2)若 ,求角 .26某校高一班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图1求分数在的频数及全班人数;2求分数在之间的频数,并计算频率分布直方图中间矩形的高;3若要从分数在之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在之间的概率【参考答案】*试卷处理标记,请不要删除一、选择题1D解析:D【解析】【分析】利用等差数列的通项公式求和公式可判断出数列的单调性,并结合等差数列的求和公式可得出结论.【详解】,.,.故选:D.【点睛】本题考查利用等差数列的前项和判断数列的单调性以及不等式,考查推理能力与计算能力,属于中等题.2B

    6、解析:B【解析】【分析】先计算与的模,再根据向量数量积的性质即可计算求值.【详解】因为,所以,.又,所以,故选B.【点睛】本题主要考查了向量的坐标运算,向量的数量积,向量的模的计算,属于中档题.3D解析:D【解析】【分析】先用和表示出 再根据,用用和表示出,再根据求出的值,最后将的值代入,从而得出答案【详解】, 整理可得:, ,故选:D【点睛】本题考查了平面向量数量积的运算,注意运用平面向量的基本定理,以及向量的数量积的性质,考查了运算能力,属于中档题4A解析:A【解析】试题分析:由程序框图知第一次运行,第二次运行,第三次运行,第四次运行,输出,所以判断框内为,故选C.考点:程序框图.5D解析

    7、:D【解析】【分析】利用正弦定理化简,再利用三角形面积公式,即可得到,由,求得,最后利用余弦定理即可得到答案【详解】由于,有正弦定理可得: ,即由于在中,所以,联立 ,解得:,由于为锐角,且,所以所以在中,由余弦定理可得:,故(负数舍去)故答案选D【点睛】本题考查正弦定理,余弦定理,以及面积公式在三角形求边长中的应用,属于中档题6A解析:A【解析】由得:,当时,函数的图象如图:,再由关于的方程有六个不同的根,则关于的方程有三个不同的根,可得,解得,故选A.点睛:本题主要考查了函数的周期性,奇偶性,函数的零点等基本性质,函数的图象特征,体现了数形结合的数学思想,属于中档题;首先求出的周期是4,画

    8、出函数的图象,将方程根的个数转化为函数图象交点的个数,得到关于的不等式,解得即可.7C解析:C【解析】函数y=f(x)定义域是2,3,由22x13,解得x2,即函数的定义域为,本题选择C选项.8D解析:D【解析】试题分析:,由题意知故D正确考点:1向量的加减法;2向量的数量积;3向量垂直9D解析:D【解析】f(x)的最小正周期为2,易知A正确;fcoscos31,为f(x)的最小值,故B正确;f(x)coscos,fcoscos0,故C正确;由于fcoscos1,为f(x)的最小值,故f(x)在上不单调,故D错误故选D.10C解析:C【解析】x1时,f(x)=(x1)2+11,x1时,在(1,

    9、+)恒成立,故ax2在(1,+)恒成立,故a1,而1+a+11,即a1,综上,a1,1,本题选择C选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f(x1)f(x2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题11C解析:C【解析】【分析】由二项展开式的通项公式为及展开式中第2项与第3项的二项式系数之比是25可得:,令展开式通项中的指数为,即可求得,问题得解【详解】二项展开式的第项的通项公式为由展开式中第2项与第3项的二项式系数之比是25,可

    10、得:.解得:.所以令,解得:,所以的系数为故选C【点睛】本题主要考查了二项式定理及其展开式,考查了方程思想及计算能力,还考查了分析能力,属于中档题12C解析:C【解析】【分析】先根据共线关系用基底表示,再根据平面向量基本定理得方程组解得实数的值.【详解】如下图,三点共线,即,又,对比,由平面向量基本定理可得:【点睛】本题考查向量表示以及平面向量基本定理,考查基本分析求解能力.二、填空题13【解析】由得所以即则又所以故答案为解析:【解析】由 得 所以,即 则 ,又 所以 故答案为.14【解析】【分析】将写成切化弦后利用两角和差余弦公式可将原式化为利用二倍角公式可变为由可化简求得结果【详解】本题正

    11、确结果:【点睛】本题考查利用三角恒等变换公式进行化简求值的问题涉及到两角和差余弦公式二解析:【解析】【分析】将写成,切化弦后,利用两角和差余弦公式可将原式化为,利用二倍角公式可变为,由可化简求得结果.【详解】本题正确结果:【点睛】本题考查利用三角恒等变换公式进行化简求值的问题,涉及到两角和差余弦公式、二倍角公式的应用.15【解析】【分析】利用凑角的方法与两角和的正弦公式求解即可【详解】因为故故答案为:【点睛】本题主要考查了凑角的方法求三角函数值的方法同时也需要根据角度的象限分析余弦的正负同时也要利用两角和的正弦公式属解析:【解析】【分析】利用凑角的方法与两角和的正弦公式求解即可.【详解】因为,

    12、故.故答案为:【点睛】本题主要考查了凑角的方法求三角函数值的方法,同时也需要根据角度的象限分析余弦的正负,同时也要利用两角和的正弦公式,属于中等题型.162【解析】抛物线的准线为与圆相切则解析:2【解析】抛物线的准线为,与圆相切,则,176【解析】【分析】设等比数列an的公比q由于是正项的递增等比数列可得q1由a1+a5=82a2a4=81=a1a5a1a5是一元二次方程x282x+81=0的两个实数根解得a1a5利用通解析:6【解析】【分析】设等比数列an的公比q,由于是正项的递增等比数列,可得q1由a1+a5=82,a2a4=81=a1a5,a1,a5,是一元二次方程x282x+81=0的

    13、两个实数根,解得a1,a5,利用通项公式可得q,an利用等比数列的求和公式可得数列的前n项和为Tn代入不等式2019|Tn1|1,化简即可得出【详解】数列为正项的递增等比数列,a2a4=81=a1a5,即解得,则公比,则 ,即,得,此时正整数的最大值为6.故答案为6.【点睛】本题考查了等比数列的通项公式与求和公式、一元二次方程的解法、不等式的解法,考查了推理能力与计算能力,属于中档题18【解析】【分析】利用两角和与差的正弦函数化简两个函数的表达式为同名函数然后利用左加右减的原则确定平移的方向与单位【详解】分别把两个函数解析式化简为:可知只需把函数的图象向右平移个单位长度得到函数的图解析:【解析

    14、】【分析】利用两角和与差的正弦函数化简两个函数的表达式为同名函数,然后利用左加右减的原则确定平移的方向与单位.【详解】分别把两个函数解析式化简为:,可知只需把函数的图象向右平移个单位长度,得到函数的图象,故答案是:.【点睛】该题考查的是有关函数图象的平移变换的问题,在解题的过程中,注意正确化简函数解析式,把握住平移的原则是左加右减,以及自变量本身的变化量.1920【解析】【分析】根据题意可知过(35)的最长弦为直径最短弦为过(35)且垂直于该直径的弦分别求出两个量然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可【详解】解:圆的标准方程为(x解析:20【解析】【分析】根据题意可知,过

    15、(3,5)的最长弦为直径,最短弦为过(3,5)且垂直于该直径的弦,分别求出两个量,然后利用对角线垂直的四边形的面积等于对角线乘积的一半求出即可【详解】解:圆的标准方程为(x3)2+(y4)252,由题意得最长的弦|AC|2510,根据勾股定理得最短的弦|BD|24,且ACBD,四边形ABCD的面积S|AC|BD|10420故答案为20【点评】考查学生灵活运用垂径定理解决数学问题的能力,掌握对角线垂直的四边形的面积计算方法为对角线乘积的一半20-1或2【解析】【分析】根据函数值的正负由可得求出再对分类讨论代入解析式即可求解【详解】当时当当所以或故答案为:或【点睛】本题考查求复合函数值认真审题理解

    16、分段函数的解析式考查分类讨论思想属于中档题解析:-1或2【解析】【分析】根据函数值的正负,由,可得,求出,再对分类讨论,代入解析式,即可求解.【详解】当时,当,当,所以或.故答案为:或.【点睛】本题考查求复合函数值,认真审题理解分段函数的解析式,考查分类讨论思想,属于中档题.三、解答题21(1)人,直方图见解析;(2)人、人、人;(3).【解析】【分析】(1)由频率分布直方图能求出第组的频数,第组的频率,从而完成频率分布直方图 (2)根据第组的频数计算频率,利用各层的比例,能求出第组分别抽取进入第二轮面试的人数 (3)设第组的位同学为,第组的位同学为,第组的位同学为,利用列举法能出所有基本事件

    17、及满足条件的基本事件的个数,利用古典概型求得概率【详解】(1)由题可知,第2组的频数为人,第组的频率为,频率分布直方图如图所示,(2)因为第组共有名学生,所以利用分层抽样在名学生中抽取名学生进入第二轮面试,每组抽取的人数分别为:第组: 人,第组:人,第组:人,所以第组分别抽取人、人、人进入第二轮面试 (3)设第组的位同学为,第组的位同学为,第组的位同学为,则从这六位同学中抽取两位同学有种选法,分别为:,其中第组的位同学中至少有一位同学入选的有种,分别为:,第组至少有一名学生被考官面试的概率为【点睛】本题考查频率分直方图、分层抽样的应用,考查概率的求法,考查数据处理能力、运算求解能力,是基础题2

    18、2(1)(2)【解析】【分析】先由两直线平行解得,再由平行直线间的距离公式可求得;代得,可得AC的方程,与联立得,再求得圆的半径,从而可得圆的标准方程【详解】解:,解得,:,:,故直线与的距离当代入,得,所以切点A的坐标为,从而直线AC的方程为,得,联立得由知的半径为,所以所求圆的标准方程为:【点睛】本题考查了直线与圆的位置关系,考查了两条平行线的距离公式,属中档题23(1);(2).【解析】【分析】(1)由于f(x)|x+1|x2|,解不等式f(x)1可分1x2与x2两类讨论即可解得不等式f(x)1的解集;(2)依题意可得mf(x)x2+xmax,设g(x)f(x)x2+x,分x1、1x2、

    19、x2三类讨论,可求得g(x)max,从而可得m的取值范围【详解】解:(1)f(x)|x+1|x2|,f(x)1,当1x2时,2x11,解得1x2;当x2时,31恒成立,故x2;综上,不等式f(x)1的解集为x|x1(2)原式等价于存在xR使得f(x)x2+xm成立,即mf(x)x2+xmax,设g(x)f(x)x2+x由(1)知,g(x),当x1时,g(x)x2+x3,其开口向下,对称轴方程为x1,g(x)g(1)1135;当1x2时,g(x)x2+3x1,其开口向下,对称轴方程为x(1,2),g(x)g()1;当x2时,g(x)x2+x+3,其开口向下,对称轴方程为x2,g(x)g(2)4+

    20、2+31;综上,g(x)max,m的取值范围为(,【点睛】本题考查绝对值不等式的解法,去掉绝对值符号是解决问题的关键,突出考查分类讨论思想与等价转化思想、函数与方程思想的综合运用,属于难题24(1)3xy20;(2)(x2)2y28.【解析】【分析】(1) 直线AB斜率确定,由垂直关系可求得直线AD斜率,又T在AD上,利用点斜式求直线AD方程;(2)由AD和AB的直线方程求得A点坐标,以M为圆心,以AM为半径的圆的方程即为所求.【详解】(1)AB所在直线的方程为x3y60,且AD与AB垂直,直线AD的斜率为3又点T(1,1)在直线AD上,AD边所在直线的方程为y13(x1),即3xy20(2)

    21、由,得,点A的坐标为(0,2),矩形ABCD两条对角线的交点为M(2,0),M为矩形ABCD外接圆的圆心,又|AM|.矩形ABCD外接圆的方程为(x2)2y28【点睛】本题考查两直线的交点,直线的点斜式方程和圆的方程,考查计算能力,属于基础题.25(1)14;(2) .【解析】试题分析:(1)先求出的值,再由同角三角函数基本关系式求出,从而求出三角形的面积即可;(2)根据余弦定理即正弦定理计算即可试题解析:(1) , , , , , (2) , , 由余弦定理得, ,由正弦定理: , 且 为锐角, 一定是锐角, 26(1)2,25;(2);(3).【解析】【分析】1先由频率分布直方图求出的频率

    22、,结合茎叶图中得分在的人数即可求得本次考试的总人数;2根据茎叶图的数据,利用1中的总人数减去外的人数,即可得到内的人数,从而可计算频率分布直方图中间矩形的高;3用列举法列举出所有的基本事件,找出符合题意得基本事件个数,利用古典概型概率计算公式即可求出结果【详解】1分数在的频率为,由茎叶图知:分数在之间的频数为2,全班人数为2分数在之间的频数为;频率分布直方图中间的矩形的高为3将之间的3个分数编号为,之间的2个分数编号为,在之间的试卷中任取两份的基本事件为:,共10个,其中,至少有一个在之间的基本事件有7个,故至少有一份分数在之间的概率是【点睛】本题考查了茎叶图和频率分布直方图的性质,以及古典概型概率计算公式的应用,此题是基础题对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(典型题)高一数学下期末试卷(带答案).doc
    链接地址:https://www.163wenku.com/p-5895676.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库