书签 分享 收藏 举报 版权申诉 / 8
上传文档赚钱

类型(全国通用高考数学一轮复习)学案23-正弦定理和余弦定理.docx

  • 上传人(卖家):刘殿科
  • 文档编号:5895588
  • 上传时间:2023-05-14
  • 格式:DOCX
  • 页数:8
  • 大小:203.45KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(全国通用高考数学一轮复习)学案23-正弦定理和余弦定理.docx》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    全国通用高考数学一轮复习 全国 通用 高考 数学 一轮 复习 23 正弦 定理 余弦 下载 _一轮复习_高考专区_数学_高中
    资源描述:

    1、第五章 解三角形与平面向量 学案23正弦定理和余弦定理导学目标: 1.利用正弦定理、余弦定理进行边角转化,进而进行恒等变换解决问题.2.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题自主梳理1三角形的有关性质(1)在ABC中,ABC_;(2)ab_c,abbsin A_sin BA_B;(4)三角形面积公式:SABCahabsin Cacsin B_;(5)在三角形中有:sin 2Asin 2BAB或_三角形为等腰或直角三角形;sin(AB)sin C,sin cos .2正弦定理和余弦定理定理正弦定理余弦定理内容_2Ra2_,b2_,c2_.变形形式a_,b_,c_;sin A_,

    2、sin B_,sin C_;abc_;cos A_;cos B_;cos C_.解决的问题已知两角和任一边,求另一角和其他两条边已知两边和其中一边的对角,求另一边和其他两角已知三边,求各角;已知两边和它们的夹角,求第三边和其他两个角.自我检测1(2010上海)若ABC的三个内角满足sin Asin Bsin C51113,则ABC()A一定是锐角三角形B一定是直角三角形C一定是钝角三角形D可能是锐角三角形,也可能是钝角三角形2(2010天津)在ABC中,内角A,B,C的对边分别是a,b,c,若a2b2bc,sin C2sin B,则A等于 ()A30B60C120D1503(2011烟台模拟)

    3、在ABC中,A60,b1,ABC的面积为,则边a的值为()A2B.C.D34(2010山东)在ABC中,角A,B,C所对的边分别为a,b,c.若a,b2,sin Bcos B,则角A的大小为_5(2010北京)在ABC中,若b1,c,C,则a_.探究点一正弦定理的应用例1(1)在ABC中,a,b,B45,求角A、C和边c;(2)在ABC中,a8,B60,C75,求边b和c.变式迁移1(1)在ABC中,若tan A,C150,BC1,则AB_;(2)在ABC中,若a50,b25,A45,则B_.探究点二余弦定理的应用例2(2011咸宁月考)已知a、b、c分别是ABC中角A、B、C的对边,且a2c

    4、2b2ac.(1)求角B的大小;(2)若c3a,求tan A的值变式迁移2在ABC中,a、b、c分别为A、B、C的对边,B,b,ac4,求a.探究点三正、余弦定理的综合应用例3在ABC中,a、b、c分别表示三个内角A、B、C的对边,如果(a2b2)sin(AB)(a2b2)sin(AB),试判断该三角形的形状变式迁移3(2010天津)在ABC中,.(1)证明:BC;(2)若cos A,求sin的值1解斜三角形可以看成是三角变换的延续和应用,用到三角变换的基本方法,同时它是对正、余弦定理,三角形面积公式等的综合应用2在利用正弦定理解已知三角形的两边和其中一边的对角,求另一边的对角,进而求出其他的

    5、边和角时,有可能出现一解、两解或无解的情况,应结合图形并根据“三角形中大边对大角”来判断解的情况,作出正确取舍3在解三角形中的三角变换问题时,要注意两点:一是要用到三角形的内角和及正、余弦定理,二是要用到三角变换、三角恒等变形的原则和方法“化繁为简”“化异为同”是解此类问题的突破口 (满分:75分)一、选择题(每小题5分,共25分)1(2010湖北)在ABC中,a15,b10,A60,则cos B等于 ()AB.CD.2.在ABC中AB3,AC=2,BC=,则等于 ()ABC.D.3在ABC中,sin2(a,b,c分别为角A,B,C的对边),则ABC的形状为()A正三角形B直角三角形C等腰直角

    6、三角形D等腰三角形4(2011聊城模拟)在ABC中,若A60,BC4,AC4,则角B的大小为()A30B45C135D45或1355(2010湖南)在ABC中,角A,B,C所对的边长分别为a,b,c,若C120,ca,则 ()AabBa(3)(4)bcsin A(5)AB2.b2c22bccos Aa2c22accos Ba2b22abcos C2Rsin A2Rsin B2Rsin Csin Asin Bsin C自我检测1C2.A3.C4.5.1课堂活动区例1解题导引已知三角形的两边和其中一边的对角,可利用正弦定理求其他的角和边,但要注意对解的情况进行判断,这类问题往往有一解、两解、无解三

    7、种情况具体判断方法如下:在ABC中已知a、b和A,求B.若A为锐角,当ab时,有一解;当absin A时,有一解;当bsin Aab时,有两解;当ab时,有一解;当ab时,无解解(1)由正弦定理得,sin A.ab,AB,A60或A120.当A60时,C180456075,c;当A120时,C1804512015,c.综上,A60,C75,c,或A120,C15,c.(2)B60,C75,A45.由正弦定理,得b4,c44.b4,c44.变式迁移1(1)(2)60或120解析(1)在ABC中,tan A,C150,A为锐角,sin A.又BC1.根据正弦定理得AB.(2)由ba,得BA,由,得

    8、sin B,0B180B60或B120.例2解(1)a2c2b2ac,cos B.0B,B.(2)方法一将c3a代入a2c2b2ac,得ba.由余弦定理,得cos A.0Aa,BA,cos A.tan A.方法三c3a,由正弦定理,得sin C3sin A.B,C(AB)A,sin(A)3sin A,sincos Acossin A3sin A,cos Asin A3sin A,5sin Acos A,tan A.变式迁移2解由余弦定理得,b2a2c22accos Ba2c22accosa2c2ac(ac)2ac.又ac4,b,ac3,联立,解得a1,c3,或a3,c1.a等于1或3.例3解题

    9、导引利用正弦定理或余弦定理进行边角互化,转化为边边关系或角角关系解方法一(a2b2)sin(AB)(a2b2)sin(AB)a2sin(AB)sin(AB)b2sin(AB)sin(AB),2a2cos Asin B2b2cos Bsin A,由正弦定理,得sin2Acos Asin Bsin2Bcos Bsin A,sin Asin B(sin Acos Asin Bcos B)0,sin 2Asin 2B,由02A2,02B2,得2A2B或2A2B,即ABC是等腰三角形或直角三角形方法二同方法一可得2a2cos Asin B2b2cos Bsin A,由正、余弦定理,即得a2bb2a,a2

    10、(b2c2a2)b2(a2c2b2),即(a2b2)(c2a2b2)0,ab或c2a2b2,三角形为等腰三角形或直角三角形变式迁移3解题导引在正弦定理2R中,2R是指什么?a2Rsin A,b2Rsin B,c2Rsin C的作用是什么?(1)证明在ABC中,由正弦定理及已知得.于是sin Bcos Ccos Bsin C0,即sin(BC)0.因为BC,从而BC0.所以BC.(2)解由ABC和(1)得A2B,故cos 2Bcos(2B)cos A.又02B,于是sin 2B.从而sin 4B2sin 2Bcos 2B,cos 4Bcos22Bsin22B.所以sinsin 4Bcos cos

    11、 4Bsin .课后练习区1D2.D3.B4.B5.A6等边三角形解析b2a2c22accos B,aca2c2ac,(ac)20,ac,又B60,ABC为等边三角形71解析由AC2B及ABC180知,B60.由正弦定理知,即sin A.由ab知,AB,A30,C180AB180306090,sin Csin 901.8.解析设BAD,DAC,则tan ,tan ,tanBACtan()1.BAC为锐角,BAC的大小为.9解(1)因为cos,所以cos A2cos21,sin A.(4分)又由3得bccos A3,所以bc5,因此SABCbcsin A2.(8分)(2)由(1)知,bc5,又bc6,由余弦定理,得a2b2c22bccos A(bc)2bc20,所以a2.(12分)10解在ADC中,AD10,AC14,DC6,由余弦定理得,cosADC,(6分)ADC120,ADB60.(8分)在ABD中,AD10,B45,ADB60,由正弦定理得,AB5.(12分)11解(1)3b23c23a24bc,b2c2a2bc.由余弦定理得,cos A,(4分)又0A,故sin A.(6分)(2)原式(8分)(11分).所以.(14分)

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(全国通用高考数学一轮复习)学案23-正弦定理和余弦定理.docx
    链接地址:https://www.163wenku.com/p-5895588.html
    刘殿科
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库