(公开课教案)《函数的单调性与导数》教学设计.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(公开课教案)《函数的单调性与导数》教学设计.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 公开课教案 函数的单调性与导数 公开 教案 函数 调性 导数 教学 设计
- 资源描述:
-
1、函数的单调性与导数教学设计【课题】函数的单调性与导数【教材】湘教版高中数学选修2-2【课时】1课时【教材分析】函数的单调性与导数是湘教版选修2-2第四章第三课第一节的内容.在学习本节课之前学生已经学习了函数及函数单调性等概念,对单调性有了一定的感性和理性的认识,同时在第二课中已经学习了导数的概念,对导数有了一定的知识储备.函数的单调性是高中数学中极为重要的一个知识点.以前学习了利用函数单调性的定义、函数的图象来研究函数的单调性,学习了导数以后,利用导数来研究函数的单调性,是导数在研究处理函数性质问题中的一个重要应用.同时,在本课第二节要学习利用导数研究函数的极值,学习了导数研究函数的单调性,对
2、于研究利用导数求函数的极值有重要的帮助.因此,学习本节内容具有承上启下的作用.【学生学情分析】课堂学生为高二年级的的学生,学生基础普遍比较好,但是学习单调性的概念是在高一第一学期学过,因此对于单调性概念的理解不够准确,同时导数是高中学生新接触的概念,如何将导数与函数的单调性联系起来是一个难点.在本节课之前学生已经学习了导数的概念、导数的几何意义和导数的四则运算,初步接触了导数在几何中的简单应用,但对导数的应用还仅停留在表面上.本节课应着重让学生通过探究来研究利用导数判定函数的单调性.【教学目标】知识点:1.探索函数的单调性与导数的关系;2.会利用导数判断函数的单调性并求函数的单调区间.能力点:
3、1.通过本节的学习,掌握用导数研究单调性的方法.2.在探索过程中培养学生的观察、分析、概括的能力渗透数形结合思想、转化思想. 教育点:通过在教学过程中让学生多动手、多观察、勤思考、善总结,培养学生的探索精神,引导学生养成自主学习的学习习惯.自主探究点:通过问题的探究,体会知识的类比迁移.以已知探求未知,从特殊到一般的数学思想方法.【教学重点】 利用导数研究函数的单调性,会求函数的单调区间.【教学难点】 探究函数的单调性与导数的关系; 如何用导数判断函数的单调性.【教学方法】启发式教学【课时安排】 1 课时【教学准备】 多媒体课件.【教学设计说明】根据新课程标准的要求,本节课的知识目标定位在以下
4、三个方面:一是能探索并应用函数的单调性与导数的关系求单调区间;二是掌握判断函数单调性的方法;三是能由导数信息绘制函数大致图象.本节课的教学设计也是围绕这些目标,利用多媒体和信息技术让学生自主探究,充分参与课堂,并从中体会学习的成功和快乐.【教学过程】教学环节教师活动学生活动设计目的新课引入新课教学探究函数的导数与函数的单调性的关系归纳总结内容讲授例题讲解结论总结例题讲解课堂练习回归生活布置作业提出问题:判断函数在上的单调性.函数增减性的定义是什么?教师指出平均变化率与瞬时变化率即导数相互关系,从而引出,可以用导数研究函数的单调性.写出课题显示多媒体判断函数在上的单调性.利用几何画板来研究。首先
5、作出函数的图像,在上任意选取一个点根据对函数的单调性与导数关系的分析,提问导数的几何意义. 几何画板,使点在上运动,观察其导数值的变化情况.然后在负数区间选取一点,观察该点的切线斜率的变化.动态展示导函数图像的形成过程.提问:是否具有一般性呢?显示多媒体(出示4个函数的解析式):引导学生完成以下问题:分组完成任务并讨论,函数的单调性与导数正负的关系.1画出函数的图像;2求出导函数并画出导函数的图像;3观察函数的单调性与导数正负的关系.引导学生思考并提出以下问题:能不能自己给出一个函数来验证?提问:从以上的分析中,总结出函数的单调性与导数正负的关系.板书总结的结论定理:一般地,函数在某个区间内1
展开阅读全文