(北师版八年级数学上册教案)7.5-第1课时-三角形内角和定理.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(北师版八年级数学上册教案)7.5-第1课时-三角形内角和定理.docx》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师版八年级数学上册教案 北师版 八年 级数 上册 教案 7.5 课时 三角形 内角 定理 下载 _八年级上册_北师大版(2024)_数学_初中
- 资源描述:
-
1、7.5三角形内角和定理第1课时 三角形内角和定理教学目标【知识与技能】掌握“三角形内角和定理”的证明及简单的应用.【过程与方法】通过一题多变,建立思考情境,形成独立思考、合作交流的学习模式,培养理性说理能力.【情感态度价值观】培养学生创造性,弘扬个性发展,体验解决问题的成就感,使学生感悟逻辑推理的数学价值.教学重难点【教学重点】理解三角形内角和定理及其简单的应用.【教学难点】 三角形内角和定理的证明方法.课前准备【教师准备】教学导入图片和例题图片.【学生准备】量角器、三角板等作图工具.教学过程一、导入新课导入一:师:我们知道,三角形内角和等于多少度?生:(齐声)三角形的内角和是180.师:你们
2、还记得这个结论的探索过程吗?请看试验:将三角形纸片的三个角剪下,随意将它们拼凑在一起.生:由试验可知三角形的内角和正好为一个平角.师:但观察与试验得到的结论,并不一定正确、可靠,这样就需要通过数学证明.那么怎样证明呢?这节课我们一起探究一下三角形内角和定理的证明.(教师板书课题)设计意图对比过去撕纸等探索过程,体会思维试验和符号化的理性作用.将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.导入二:课件出示三角形家族的“官司”风波.故事导入:很久很久以前的一天,数学国际法庭来了三位告状者,它们是锐角三角形、直角三角形和钝角三角形.“它们干什么来
3、了?”“是来打官司的.”这不它们在法庭外刚一见面又争吵起来:锐角三角形说:“我们锐角三角形的内角和度数最大!”直角三角形说:“不对!是我们直角三角形的内角和最大!”钝角三角形说:“你们别吵了!还是我们钝角三角形的内角和最大!”问题1【课件1】如果你是法庭庭长,你认为该怎样对它们宣判?为什么?问题2【课件2】你们还记得小学是怎样探索三角形内角和的吗?谁能给大家说一说或者展示一下吗?问题3【课件3】小学的证明方法固然好,但是这些方法可靠吗?现在有更加科学严密、更有说服力的证明方法吗?处理方式学生观察并读出对话及问题.问题1学生能够顺利解决;问题2学生一次回答出全部答案会有困难,根据学生已有的知识经
4、验,学生间互相补充能够解决,学生边说边在讲台上演示测量法、折拼法、剪拼法(撕拼法).学生回答时语言可能不准确,教师及时引导纠正.教师根据学生回答利用课件展示三种方法.对于问题3,学生通过思考、联想前面所学,应该能够解决.学生只要能够回答出用推理的方法证明三角形内角和即可,不要求作出具体回答.1.测量法.2.折拼法:3.剪拼法(撕拼法):设计意图通过学生动手测量、折纸与剪纸等操作让学生获得直接经验,为下面探究推理证明提供直接经验.导入三:出示下面的投影片 工人师傅将凹型零件(图(1)加工成斜面EC与槽底CD成55角的燕尾槽(图(2)的程序是:将垂直的铣刀倾斜偏转35角(图(3),就能得到55的燕
5、尾槽底角.为什么铣刀偏转35角就能得到55的燕尾槽底角呢?设计意图通过问题的解答,再现所学知识,为新知识的接纳做心理和知识上的准备,引出新课内容.二、 新知构建(1).探索三角形内角和定理过渡语我们已经知道三角形内角和等于180,这个定理是怎样证明的呢?思路一活动内容1证明思路的探索分析.(多媒体出示)剪拼法图示(动态):问题1【课件1】如图所示,当A移到1的位置时,残边CD和边AB有何位置关系?为什么?问题2【课件2】在剪拼法中,通过移动角拼成了一个平角;如果不实际移动角,那么你还有其他方法可以达到同样的效果吗?处理方式教师先出示图,学生读题回答.对于问题1可让学生到黑板前指图回答,注意语言
6、表达及学生指图的准确性,发现不当处,及时强调.问题2可以让学生合作完成.如果有困惑,教师可作引导.利用课件图形,结合问题1引导学生进行逆向思考:“如果先移动角,那么可以得到平行线;反过来,如果我们先画出平行线,会得到什么呢?”此时教师在空白ABC上规范作出射线CD,使CDAB,学生自然推出1=A.教师追问:“你还可以得到哪些角相等?说说理由.”学生得出2=B后,一个平角自然就摆放在学生眼前了,达到了移角的效果.此时教师顺势引出辅助线:为了证明的需要,在原来的图形上添作的线叫做辅助线.(教师板书:辅助线)在平面几何里,辅助线通常画成虚线.设计意图利用剪撕纸得来的直接经验和逆向思维的方式,引导学生
7、初步感悟辅助线的来源和作用,提高学生分析问题的能力.活动内容2说一说,写一写.问题1【课件1】你能用简洁的语言完整地说一说分析思路吗?问题2【课件2】你能用数学推理的方法证明它吗?问题3【课件3】证明的关键是什么?说说你的想法.处理方式问题1小组交流后学生代表发言,展示交流成果.学生发言时,教师注意提示学生文字命题的证明步骤以及数学语言表达的规范性.对于问题2,教师引导学生再次明确辅助线的作法及其相关要求:(1)这里的CD称为辅助线;(2)辅助线通常画成虚线.师生合作,教师规范完成辅助线的添加后,余下的证明过程由一名学生在黑板上独立完成,其余学生在练习本上写出完整的证明过程.教师巡视,帮助、鼓
8、励困难学生解决问题.学生板演完成后师生共同评价,评价时重点强调辅助线的作法及证明过程的规范性.对于问题3,学生回答时,可能语言不准确,教师及时引导,让学生自主感悟体会到证明的关键是添加辅助线,把三角形内角和转化成一个平角.【多媒体展示】已知:如图所示,ABC. 求证:A+B+ACB=180.证明:如图所示,延长BC至D,过点C作射线CEAB,则1=A(两直线平行,内错角相等),2=B(两直线平行,同位角相等).1+2+ACB=180(平角的定义),A+B+ACB=180(等量代换).师:命题“三角形的内角和等于180”经过了我们严密地推理证明,它是真命题.此时我们可以理直气壮地称之为三角形内角
展开阅读全文