书签 分享 收藏 举报 版权申诉 / 9
上传文档赚钱

类型(北师版八年级数学上册教案)7.5-第1课时-三角形内角和定理.docx

  • 上传人(卖家):刘殿科
  • 文档编号:5894228
  • 上传时间:2023-05-14
  • 格式:DOCX
  • 页数:9
  • 大小:459.05KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(北师版八年级数学上册教案)7.5-第1课时-三角形内角和定理.docx》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    北师版八年级数学上册教案 北师版 八年 级数 上册 教案 7.5 课时 三角形 内角 定理 下载 _八年级上册_北师大版(2024)_数学_初中
    资源描述:

    1、7.5三角形内角和定理第1课时 三角形内角和定理教学目标【知识与技能】掌握“三角形内角和定理”的证明及简单的应用.【过程与方法】通过一题多变,建立思考情境,形成独立思考、合作交流的学习模式,培养理性说理能力.【情感态度价值观】培养学生创造性,弘扬个性发展,体验解决问题的成就感,使学生感悟逻辑推理的数学价值.教学重难点【教学重点】理解三角形内角和定理及其简单的应用.【教学难点】 三角形内角和定理的证明方法.课前准备【教师准备】教学导入图片和例题图片.【学生准备】量角器、三角板等作图工具.教学过程一、导入新课导入一:师:我们知道,三角形内角和等于多少度?生:(齐声)三角形的内角和是180.师:你们

    2、还记得这个结论的探索过程吗?请看试验:将三角形纸片的三个角剪下,随意将它们拼凑在一起.生:由试验可知三角形的内角和正好为一个平角.师:但观察与试验得到的结论,并不一定正确、可靠,这样就需要通过数学证明.那么怎样证明呢?这节课我们一起探究一下三角形内角和定理的证明.(教师板书课题)设计意图对比过去撕纸等探索过程,体会思维试验和符号化的理性作用.将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.导入二:课件出示三角形家族的“官司”风波.故事导入:很久很久以前的一天,数学国际法庭来了三位告状者,它们是锐角三角形、直角三角形和钝角三角形.“它们干什么来

    3、了?”“是来打官司的.”这不它们在法庭外刚一见面又争吵起来:锐角三角形说:“我们锐角三角形的内角和度数最大!”直角三角形说:“不对!是我们直角三角形的内角和最大!”钝角三角形说:“你们别吵了!还是我们钝角三角形的内角和最大!”问题1【课件1】如果你是法庭庭长,你认为该怎样对它们宣判?为什么?问题2【课件2】你们还记得小学是怎样探索三角形内角和的吗?谁能给大家说一说或者展示一下吗?问题3【课件3】小学的证明方法固然好,但是这些方法可靠吗?现在有更加科学严密、更有说服力的证明方法吗?处理方式学生观察并读出对话及问题.问题1学生能够顺利解决;问题2学生一次回答出全部答案会有困难,根据学生已有的知识经

    4、验,学生间互相补充能够解决,学生边说边在讲台上演示测量法、折拼法、剪拼法(撕拼法).学生回答时语言可能不准确,教师及时引导纠正.教师根据学生回答利用课件展示三种方法.对于问题3,学生通过思考、联想前面所学,应该能够解决.学生只要能够回答出用推理的方法证明三角形内角和即可,不要求作出具体回答.1.测量法.2.折拼法:3.剪拼法(撕拼法):设计意图通过学生动手测量、折纸与剪纸等操作让学生获得直接经验,为下面探究推理证明提供直接经验.导入三:出示下面的投影片 工人师傅将凹型零件(图(1)加工成斜面EC与槽底CD成55角的燕尾槽(图(2)的程序是:将垂直的铣刀倾斜偏转35角(图(3),就能得到55的燕

    5、尾槽底角.为什么铣刀偏转35角就能得到55的燕尾槽底角呢?设计意图通过问题的解答,再现所学知识,为新知识的接纳做心理和知识上的准备,引出新课内容.二、 新知构建(1).探索三角形内角和定理过渡语我们已经知道三角形内角和等于180,这个定理是怎样证明的呢?思路一活动内容1证明思路的探索分析.(多媒体出示)剪拼法图示(动态):问题1【课件1】如图所示,当A移到1的位置时,残边CD和边AB有何位置关系?为什么?问题2【课件2】在剪拼法中,通过移动角拼成了一个平角;如果不实际移动角,那么你还有其他方法可以达到同样的效果吗?处理方式教师先出示图,学生读题回答.对于问题1可让学生到黑板前指图回答,注意语言

    6、表达及学生指图的准确性,发现不当处,及时强调.问题2可以让学生合作完成.如果有困惑,教师可作引导.利用课件图形,结合问题1引导学生进行逆向思考:“如果先移动角,那么可以得到平行线;反过来,如果我们先画出平行线,会得到什么呢?”此时教师在空白ABC上规范作出射线CD,使CDAB,学生自然推出1=A.教师追问:“你还可以得到哪些角相等?说说理由.”学生得出2=B后,一个平角自然就摆放在学生眼前了,达到了移角的效果.此时教师顺势引出辅助线:为了证明的需要,在原来的图形上添作的线叫做辅助线.(教师板书:辅助线)在平面几何里,辅助线通常画成虚线.设计意图利用剪撕纸得来的直接经验和逆向思维的方式,引导学生

    7、初步感悟辅助线的来源和作用,提高学生分析问题的能力.活动内容2说一说,写一写.问题1【课件1】你能用简洁的语言完整地说一说分析思路吗?问题2【课件2】你能用数学推理的方法证明它吗?问题3【课件3】证明的关键是什么?说说你的想法.处理方式问题1小组交流后学生代表发言,展示交流成果.学生发言时,教师注意提示学生文字命题的证明步骤以及数学语言表达的规范性.对于问题2,教师引导学生再次明确辅助线的作法及其相关要求:(1)这里的CD称为辅助线;(2)辅助线通常画成虚线.师生合作,教师规范完成辅助线的添加后,余下的证明过程由一名学生在黑板上独立完成,其余学生在练习本上写出完整的证明过程.教师巡视,帮助、鼓

    8、励困难学生解决问题.学生板演完成后师生共同评价,评价时重点强调辅助线的作法及证明过程的规范性.对于问题3,学生回答时,可能语言不准确,教师及时引导,让学生自主感悟体会到证明的关键是添加辅助线,把三角形内角和转化成一个平角.【多媒体展示】已知:如图所示,ABC. 求证:A+B+ACB=180.证明:如图所示,延长BC至D,过点C作射线CEAB,则1=A(两直线平行,内错角相等),2=B(两直线平行,同位角相等).1+2+ACB=180(平角的定义),A+B+ACB=180(等量代换).师:命题“三角形的内角和等于180”经过了我们严密地推理证明,它是真命题.此时我们可以理直气壮地称之为三角形内角

    9、和定理.【课件展示】三角形内角和定理:三角形的内角和等于180.设计意图用平行线的性质定理来推导出三角形内角和定理,让学生再次体会推理证明的严密性和数学的严谨.同时让学生初步理解添加辅助线的原因及添加辅助线的注意事项,培养学生的分析能力和逻辑推理能力.思路二过渡语根据上面给出的基本事实和三角形内角和定理,你能用自己的语言说一说这一结论的证明思路吗?你能用较为简洁的语言写出这一证明过程吗?与同伴交流.接下来同学们来证明:三角形的内角和等于180这个真命题.这是一个文字命题,证明时需要先干什么呢?生:需要先画出图形,根据命题的条件和结论,结合图形写出已知、求证.师:对,下面大家来证明,哪位同学上黑

    10、板给大家板演呢? 生1:已知:如图所示,ABC. 求证:A+B+ACB=180.证明:作BC的延长线CD,过点C作射线CEAB,则ACE=A(两直线平行,内错角相等),ECD=B(两直线平行,同位角相等).ACB+ACE+ECD=180(平角的定义),A+B+ACB=180(等量代换).生2:老师,我的证明过程是这样的:证明:作BC的延长线CD,作ECD=B,则ECAB(同位角相等,两直线平行),A=ACE(两直线平行,内错角相等).ACB+ACE+ECD=180(1平角=180),ACB+A+B=180(等量代换).师:同学们写的证明过程都很好,在证明过程中,我们仅仅添画了一条射线CE,使处

    11、于原三角形中不同位置的三个角,巧妙地拼“凑”到了一起.为了证明的需要,在原来的图形上添画的线叫做辅助线.在平面几何里,辅助线通常画成虚线.我们通过推理的过程,得证了命题:三角形的内角和等于180是真命题,这时称它为定理,即三角形内角和定理.(2)、想一想,做一做【问题】你还能用其他方法证明三角形内角和定理吗?处理方式学生先尝试独立完成,教师巡视引导.绝大多数学生会想到图形(1)的方法.对于图形(2),可能只有少数学生想到或者全体学生都想不到.当只有少数学生想到时,教师指名学生说说方法和理由.如果全体学生都想不到,教师可以追问:“我们移动其中一块,能否得到平行线呢?”并引导学生摆出图形(2).结

    12、合图形(2),学生会恍然大悟:应该如何添加辅助线,进而解决图形(2)的证明过程.教师巡视时,有意识寻找证明过程正确规范的作业,全班展示、评价. 【参考答案】证法1:过点A作DEBC. DEBC,1=B,2=C(两直线平行,内错角相等).1+2+3=180(平角的定义),BAC+B+C=180(等量代换).证法2:过点A作ADBC. ADBC,1=B(两直线平行,内错角相等),DAC+C=180(两直线平行,同旁内角互补).又DAC=1+2,1+2+C=180(等量代换),BAC+B+C=180(等量代换).设计意图通过学生独立运用较简单的方法证明三角形内角和定理,感受体会“辅助线”的作法和作用

    13、,提高一题多解的能力,体会思维的多样性和基本的转化思想.(3)、议一议【问题】综上所述,添加辅助线的目的是什么?你是怎样理解辅助线的?处理方式教师先快速地展示三种辅助线的添加图形,学生结合图片先在小组内讨论交流,形成小组成果,然后全班交流、随时互评.学生讨论时,教师参与其中,倾听学生的讨论,引导学生从辅助线的作用、作法、要求去交流.学生通过观察图形得出:添加辅助线的目的是构造180的平角或同旁内角.【课件展示】添加辅助线的目的:三角形内角和平角、同旁内角【教师总结】(1)辅助线通常画成虚线;(2)辅助线要正确、规范地写出作法,并标明字母,便于书写证明过程;(3)辅助线能把题目中可利用的隐藏条件

    14、显露出来,化难为易.为便于学生掌握,总结四句话:小小辅助线,作时画虚线,写清其来源,隐藏条件见.设计意图添加辅助线是教学中的一个难点,学生通过思考、讨论、交流对辅助线的认识,展示思维过程,然后在老师的引导下达成共识,进一步加深了对辅助线的理解,易于突破教学难点,提高学生解决问题的能力.(4)、探究活动刚才同学们对辅助线掌握得很好.接下来,我将平角或同旁内角的位置移动或者改造一下,使它再有一些难度,看谁还能攻克它?处理方式教师先出示图(1),思考:怎样添加辅助线?学生思考讨论,由于图形较直观,学生能够解决辅助线的添加问题;学生完成后教师出示图(2);为便于学生叙述证明过程,教师再出示图(3).学

    15、生根据图(3)口述证明过程.学生在口述证明过程时,教师注意数学语言表达的规范性和推理证明的逻辑性.(1)(2) 设计意图用多种方法证明三角形内角和定理,培养一题多解的能力,同时提高学生添加辅助线的技能、技巧,提高解决问题的能力.(5)、典例解析,应用新知活动内容1通过刚才的学习,同学们不仅知道了辅助线,而且利用它用多种方法证明了三角形内角和定理,你们觉得学了这些知识,能解决哪些问题呢?【课件展示】如图所示,在ABC中,B=38,C=62,AD是ABC的角平分线,求ADB的度数. 处理方式学生先结合图形读题,指图说出已知条件和要解决的问题,然后说说分析思路及求解过程,最后学生板演,师生共同评价.

    16、如果学生有困难,可以先在小组内讨论交流.在学生板演时,教师巡视指导,帮助、鼓励学困生完成任务.集体评价时,教师强调证明过程的规范性和严谨性.解:在ABC中,B+C+BAC=180(三角形内角和定理).B=38,C=62(已知),BAC=180-38-62=80(等式的性质).AD平分BAC(已知),BAD=CAD=12BAC=1280=40(角平分线的定义).在ADB中,B+BAD+ADB=180(三角形内角和定理).B=38(已知),BAD=40(已证),ADB=180-38-40=102(等式的性质).设计意图学生通过三角形内角和定理的简单应用,及时加深了对所学知识的理解,规范学生的证明过

    17、程,培养了学生良好的学习数学的习惯.三、课堂总结四、课堂练习1.三角形三个内角的和等于.答案:1802.如下图所示的是三角形内角和定理的几种证明方法,可分别记作法,法,法. 答案:拼凑作平行线折叠3. 如图所示,AD是BAC的平分线,若ADC=110,且DAC=C,求ABC的三个内角的度数. 解:ADC=110,DAC=C,C=180-1102=35,BAC=2DAC=2C=70,B=180-70-35=75.4.在ABC中,ABC=135,求A,B,C的度数.解:设A,B,C的度数分别为x,3x,5x,则x+3x+5x=180,解得x=20,A=20,B=60,C=100.五、板书设计第1课时1.探索三角形内角和定理2.想一想,做一做3.议一议4.探索活动5.典例解析,应用新知六、布置作业【必做题】教材随堂练习第2,3题.【选做题】教材习题7.6第5题.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(北师版八年级数学上册教案)7.5-第1课时-三角形内角和定理.docx
    链接地址:https://www.163wenku.com/p-5894228.html
    刘殿科
         内容提供者      个人认证 实名认证
    相关资源 更多
  • 北师大版八年级数学下册-第三章-图形的平移与旋转-单元培优卷(含答案).doc北师大版八年级数学下册-第三章-图形的平移与旋转-单元培优卷(含答案).doc
  • 2024 河北语文中考备考重难专题:课外文言文阅读(课件)(课件).pptx2024 河北语文中考备考重难专题:课外文言文阅读(课件)(课件).pptx
  • 2024-2025学年度北师版八年级上册数学-期末复习课四(第四章 一次函数)(课件).pptx2024-2025学年度北师版八年级上册数学-期末复习课四(第四章 一次函数)(课件).pptx
  • 2024-2025学年度北师版八年级上册数学-专题1-勾股定理及其逆定理在平面几何中的应用(课件).pptx2024-2025学年度北师版八年级上册数学-专题1-勾股定理及其逆定理在平面几何中的应用(课件).pptx
  • 2024-2025学年度北师版八年级上册数学-第十一周自主评价练习(课件).pptx2024-2025学年度北师版八年级上册数学-第十一周自主评价练习(课件).pptx
  • 2024-2025学年度北师版八年级上册数学-专题5-一次函数中的综合问题(课件).pptx2024-2025学年度北师版八年级上册数学-专题5-一次函数中的综合问题(课件).pptx
  • 2024-2025学年度北师版八年级上册数学-专题7-二元一次方程组中的参数问题(课件).pptx2024-2025学年度北师版八年级上册数学-专题7-二元一次方程组中的参数问题(课件).pptx
  • 2024-2025学年度北师版八年级上册数学-期末复习课一(第一章 勾股定理)(课件).pptx2024-2025学年度北师版八年级上册数学-期末复习课一(第一章 勾股定理)(课件).pptx
  • 2024-2025学年度北师版八年级上册数学-第三章-位置与坐标-回顾与思考(课件).pptx2024-2025学年度北师版八年级上册数学-第三章-位置与坐标-回顾与思考(课件).pptx
  • 2024-2025学年度北师版八年级上册数学-第四周自主评价练习(第二章全章)(课件).pptx2024-2025学年度北师版八年级上册数学-第四周自主评价练习(第二章全章)(课件).pptx
  • 2024-2025学年度北师版八年级上册数学-期末复习课二(第二章 实 数)(课件).pptx2024-2025学年度北师版八年级上册数学-期末复习课二(第二章 实 数)(课件).pptx
  • 2024-2025学年度北师版八年级上册数学-专题6-一次函数中的规律探索问题(课件).pptx2024-2025学年度北师版八年级上册数学-专题6-一次函数中的规律探索问题(课件).pptx
  • 2024-2025学年度北师版八年级上册数学-第四章-一次函数-回顾与思考(课件).pptx2024-2025学年度北师版八年级上册数学-第四章-一次函数-回顾与思考(课件).pptx
  • 2024-2025学年度北师版八年级上册数学-第八周自主评价练习(第四章第1~3节)(课件).pptx2024-2025学年度北师版八年级上册数学-第八周自主评价练习(第四章第1~3节)(课件).pptx
  • Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库