书签 分享 收藏 举报 版权申诉 / 9
上传文档赚钱

类型(华师大版教材适用)七年级数学下册《(教学设计)中心对称》.doc

  • 上传人(卖家):刘殿科
  • 文档编号:5894215
  • 上传时间:2023-05-14
  • 格式:DOC
  • 页数:9
  • 大小:185KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(华师大版教材适用)七年级数学下册《(教学设计)中心对称》.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    华师大版教材适用 【教学设计 师大 教材 适用 七年 级数 下册 教学 设计 中心对称 下载 _七年级下册_华师大版(2024)_数学_初中
    资源描述:

    1、 华师大版七年级数学下册教学设计中心对称教学设计与反思三维目标:知识与技能(1)通过具体实例认识两个图形关于某一点或中心对称的本质:就是一个图形绕一点旋转180而成。(2)掌握成中心对称的两个图形的性质,以及利用两种不同方式来作出中心对称的图形。过程与方法利用中心对称的特征作出某一图形成中心对称的图形,确定对称中心的位置。情感、态度与价值观经历对日常生活中与中心对称有关的图形进行观察、分析、欣赏、动手操作、画图等过程,发展审美能力,增强对图形的欣赏意识。教学重点难点重点 中心对称的性质及初步应用。难点 中心对称与旋转之间的关系。教学方法 讲练结合法教具 多媒体课件教与学互动设计 (一)创设情境

    2、 导入新课 导语一 在前一节中我们学习了图形的旋转,那么旋转后的图形有哪些性质?(旋转前后图形全等,对应点到旋转中心的距离相等,旋转角均相等。) 导语二 观察图中三个图形旋转的角度,发现哪个图形与其他二个不同? (二)合作交流 解读探究 解读信息,引出课题:教师指出在生活中有许许多多的图形都具有以上特征,在各个领域中都有广泛的应用。它都能给人以一种美的享受。本节我们就来研究这些图形的形成中心对称。出示多媒体课件 用多媒体出示P68页的观察。 教师引导学生边观察边回答问题。 1出示课件中心对称的概念 把一个图形绕着某一点旋转180,如果它能够与另一个图形重合,那么称这两个图形关于这点对称或中心对

    3、称这个点叫做对称中心。这两个图形中的对应点叫做关于中心的对称点。 师:请说出课件中图的对称中心和对称点。 2中心对称的性质 探究如图,旋转三角板,画关于点O对称的两个三角形; 第一步,画出ABC; 第二步,以三角板的一个顶点O为中心,把三角板旋转180,画出ABC;第三步,移开三角板。这样画出的ABC与ABC,关于点O对称分别连接对应点AA、BB、CC点O在线段AA上吗?如果在,在什么位置?ABC与ABC有什么关系? 发现我们可以发现:(1)点O是线段AA的中点;(2)ABCABC。 探索下图中ABC与ABC关于点O是成中心对称的,你能从图中找到那些等量关系?(多媒体出示图形)结论 (1) 关

    4、于中心对称的两个图形中,对称点所连线段都经过对称中心,而且被对称中心所平分。 (2) 关于中心对称的两个图形是全等图形。议一议 中心对称与轴对称有什么区别?又有什么联系? 3画已知图形关于已知点的中心对称图形。 试一试点与点对称作法。已知点A和点O,如图,试作出点A关于点O的对称点。 做一做如图,已知线段AB和点O,画线段AB,使它与线段AB关于点O成中心对称。 构思关键是作出A,B两点关于点O的对称点A,B 实践 (1)连结AO,并延长AO到A,使得AO=OA; (2)连结BO,并延长BO到B,使得BO=OB; (3)连结AB。 则线段AB就是线段AB关于点O的对称线段。想一想回顾以上作图过

    5、程,总结作中心对称的图形的一般步骤是什么?(1)确定“代表性的点”;(2)作出每个代表性点的对称点;(3)顺次连结。做一做(例1如图,选择点O为对称中心,画出与ABC关于点O对称的ABC。解:如图,作出点A,点B,点C关于点O的对称点A,B,C,依次连接AB,BC,CA,就可以得到与ABC关于点O对称的ABC。做一做例2已知四边形ABCD和点O,画四边形ABCD,使它与已知四边形关于这一点对称。(三)应用迁移 巩固提高1反馈练习:画一个与已知四边形ABCD中心对称图形(1)以顶点A为对称中心;(2)以BC边的中点O为对称中心。AvDAvBDAvCBDAvAvDAvBDAvCBDAvAvDAvB

    6、DAvCBDAvO2应用:如图已知 ABC与ABC中心对称,求出它们的对称中心O。(四)课堂小结 小结 1本节学习的数学知识是中心对称的概念,以及和图形旋转之间的关系。 2本节学习的数学方法是作中心对称的图形的步骤与方法。 (五)作业 P131 1, 2 板书设计10.4 中心对称1、 中心对称的概念2、 中心对称的性质及应用3、 巩固练习4、 小结及拓展反思:学生在初一下学期学习了轴对称的有关知识,在学习中心对称知识时一方面要用这一知识作类比,另一方面又要防止轴对称概念对中心对称概念的干扰,在教学中本课在揭示了中心对称图形的概念,加强了和轴对称图形的辨析,并在练习中掌握它们的区别,让学生在类

    7、比和辨析中更好地掌握中心对称图形这一概念。同样中心对称图形和两个图形成中心对称,这两个概念又充满了辨证关系,当把某个图形看作一个整体,如果满足绕一点旋转180度和自身重合,这个图形就是中心对称图形;如果把这个图形的组成部分看作两个图形,则其中一个图形绕一点旋转180度与另一个图形完全重合,则这两个图形关于这一点成中心对称。所以中心对称图形和两个图形成中心对称是一个事物的两个方面,其概念是相对而言的。这两个概念有助于学生辨证思维的培养,同时这两个概念的区别和联系的正确理解是本堂课的难点所在,在教学中,在学生已掌握中心对称图形这一概念后,通过动画演示让学生明确这是中心对称图形,接着将图形标上字母,并把两个三角形涂上不同的颜色,让学生把这个图形看作两个三角形,动画演示让其中一个三角形绕一点旋转180度与另一个三角形重合,从而揭示两个图形关于某一点成中心对称的概念,这样通过动画让学生明白了中心对称图形和两个图形成中心对称概念之间的区别 象这样运用直观形象的演示来演绎比较容易混淆的概念效果还的比较好的。在教中心对称图形与中心对称关系时,我让学生和我一起做手势来表达一个中心对称图形或表达一对成中心对称关系的两个图形时,学生的兴致很高,而且效果也很好。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(华师大版教材适用)七年级数学下册《(教学设计)中心对称》.doc
    链接地址:https://www.163wenku.com/p-5894215.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库