(北京地区适应)中考数学一模试卷精选汇编《几何综合》(解析版).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(北京地区适应)中考数学一模试卷精选汇编《几何综合》(解析版).doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北京地区适应 几何综合 北京地区 适应 中考 数学 试卷 精选 汇编 几何 综合 解析 下载 _模拟试题_中考复习_数学_初中
- 资源描述:
-
1、几何综合东城区27. 已知ABC中,AD是的平分线,且AD=AB, 过点C作AD的垂线,交 AD 的延长线于点H (1)如图1,若 直接写出和的度数; 若AB=2,求AC和AH的长; (2)如图2,用等式表示线段AH与AB+AC之间的数量关系,并证明27. (1),;-2分 作DEAC交AC于点E.RtADE中,由,AD=2可得DE=1,AE.RtCDE中,由,DE=1,可得EC=1.AC. RtACH中,由,可得AH; -4分(2)线段AH与AB+AC之间的数量关系:2AH=AB+AC证明: 延长AB和CH交于点F,取BF中点G,连接GH. 易证ACH AFH.,., . . . -7分西城
2、区27正方形的边长为,将射线绕点顺时针旋转,所得射线与线段交于点,作于点,点与点关于直线对称,连接(1)如图,当时,依题意补全图用等式表示与之间的数量关系:_(2)当时,探究与之间的数量关系并加以证明(3)当时,若边的中点为,直接写出线段长的最大值【解析】(1)补全的图形如图所示:(2),连接,(3),点在以为直径的圆上,海淀区27如图,已知,点为射线上的一个动点,过点作,交于点,点在内,且满足,.(1)当时,求的长;(2)在点的运动过程中,请判断是否存在一个定点,使得的值不变?并证明你的判断. 27.解:(1)作交于.,. 1分,. 3分(2)当点在射线上且满足时,的值不变,始终为1.理由如
3、下: 4分当点与点不重合时,延长到使得.,.,是公共边,. 5分作于,于.,. 6分,,四边形为矩形.,.,.,即.当点与点重合时,由上过程可知结论成立. 7分丰台区27如图,RtABC中,ACB = 90,CA = CB,过点C在ABC外作射线CE,且BCE = ,点B关于CE的对称点为点D,连接AD,BD,CD,其中AD,BD分别交射线CE于点M,N.(1)依题意补全图形;(2)当= 30时,直接写出CMA的度数;(3)当0 45时,用等式表示线段AM,CN之间的数量关系,并证明 27解:(1)如图; 1分(2)45; 2分(3)结论:AM=CN 3分证明:作AGEC的延长线于点G点B与点
4、D关于CE对称,CE是BD的垂直平分线CB=CD1=2=CA=CB,CA=CD3=CAD4=90,3=(180ACD)=(18090)=455=2+3=+45-=455分4=90,CE是BD的垂直平分线,1+7=90,1+6=906=7 AGEC,G=90=8 在BCN和CAG中,8=G,7=6, BC=CA,BCNCAGCN=AG RtAMG中,G=90,5=45,AM=AG AM=CN 7分(其他证法相应给分.)石景山区27在正方形ABCD中,M是BC边上一点,点P在射线AM上,将线段AP绕点A顺时针旋转得到线段AQ,连接BP,DQ(1)依题意补全图1;(2)连接,若点P,Q,D恰好在同一
5、条直线上,求证:; 若点P,Q,C恰好在同一条直线上,则BP与AB的数量关系为: 27(1)补全图形如图1. 1分 图1 (2)证明: 图2 连接,如图2, 线段绕点顺时针旋转90得到线段, , 四边形是正方形, , 3分 , 在中, 在中, 又, 5分 7分证明:过点A作AEPQ于E ,连接BE ACAE是PAQ的垂线三PAQ是等腰直角三角形(已证)AE是等腰直角三角形PAQ的垂线,角平分线AEP=90,AE=PE正方形ABCDABC=90ACB=BAC=45AEP+ABC=180A ,B,C,E四点共圆AEB=ACB=45,CEB=BAC=45AEB=CEB=45BE=BEABEPBE (
6、SAS)BP=AB朝阳区27. 如图,在菱形ABCD中,DAB=60,点E为AB边上一动点(与点A,B不重合),连接CE,将ACE的两边所在射线CE,CA以点C为中心,顺时针旋转120,分别交射线AD于点F,G.(1)依题意补全图形;(2)若ACE=,求AFC 的大小(用含的式子表示);(3)用等式表示线段AE、AF与CG之间的数量关系,并证明27.(1)补全的图形如图所示.1分(2)解:由题意可知,ECF=ACG=120.FCG=ACE=.四边形ABCD是菱形,DAB=60,DAC=BAC= 30. 2分AGC=30.AFC =+30. 3分(3)用等式表示线段AE、AF与CG之间的数量关系
7、为.证明:作CHAG于点H.由(2)可知BAC=DAC=AGC=30. CA=CG. 5分HG =AG.ACE =GCF,CAE =CGF,ACEGCF. 6分AE =FG.在RtHCG中, AG =CG. 7分即AF+AE=CG.燕山区27如图,抛物线的顶点为M ,直线y=m与抛物线交于点A,B ,若AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶(1)由定义知,取AB中点N,连结MN,MN与AB的关系是 (2)抛物线对应的准蝶形必经过B(m,m),则m= ,对应的碟宽AB是 (3)抛物线对应的碟宽在
展开阅读全文