(常考题)高一数学上期末试卷(带答案).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(常考题)高一数学上期末试卷(带答案).doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 常考题 考题 数学 期末试卷 答案 下载 _考试试卷_数学_高中
- 资源描述:
-
1、【常考题】高一数学上期末试卷(带答案)一、选择题1已知在R上是奇函数,且A-2B2C-98D982若函数的定义域为 ,则实数 取值范围是( )ABCD3设,则的大小关系是( )A B C D 4对于函数,在使恒成立的式子中,常数的最小值称为函数的“上界值”,则函数的“上界值”为( )A2B2C1D15设函数的定义域为R,满足,且当时,.若对任意,都有,则m的取值范围是ABCD6函数的单调递增区间为( )ABCD7若x0cosx0,则( )Ax0(,)Bx0(,)Cx0(,)Dx0(0,)8下列函数中,值域是的是( )ABCD9已知函数,正实数满足且,若在区间上的最大值为2,则的值分别为A,2B
2、,C,2D,410已知全集为,函数的定义域为集合,且,则的取值范围是()ABC或D或11曲线与直线有两个不同的交点时实数的范围是( )ABCD12若不等式对于一切恒成立,则的取值范围为( )ABCD二、填空题13已知,则不等式的解集为_14已知幂函数在上是减函数,则_15已知函数若关于的方程,有两个不同的实根,则实数的取值范围是_16通过研究函数在内的零点个数,进一步研究得函数(,且为奇数)在内零点有_个17已知函数的值域为,则实数的值为_18对于函数f(x),若存在x0R,使f(x0)=x0,则称x0是f(x)的一个不动点,已知f(x)=x2+ax+4在1,3恒有两个不同的不动点,则实数a的
3、取值范围_.19某食品的保鲜时间y(单位:小时)与储存温度x(单位:)满足函数关系(为自然对数的底数,k、b为常数)若该食品在0的保鲜时间设计192小时,在22的保鲜时间是48小时,则该食品在33的保鲜时间是 小时.20已知函数为上的增函数,且对任意都有,则_.三、解答题21计算或化简:(1);(2).22已知定义在上的函数满足,且当时,.(1)求;(2)求证:在定义域内单调递增;(3)求解不等式.23已知是定义在上的奇函数,且.(1)求的解析式;(2)判断在上的单调性,并用定义加以证明.24若是奇函数.(1)求的值;(2)若对任意都有,求实数m的取值范围.25设全集,集合,(1)求;(2)若
4、函数的定义域为集合,满足,求实数的取值范围.26已知函数(,且),且.(1)若,求实数的取值范围;(2)若方程有两个解,求实数的取值范围.【参考答案】*试卷处理标记,请不要删除一、选择题1A解析:A【解析】f(x4)f(x),f(x)是以4为周期的周期函数,f(2 019)f(50443)f(3)f(1)又f(x)为奇函数,f(1)f(1)2122,即f(2 019)2.故选A2A解析:A【解析】【分析】根据题意可得出,不等式mx2mx+20的解集为R,从而可看出m0时,满足题意,m0时,可得出,解出m的范围即可【详解】函数f(x)的定义域为R;不等式mx2mx+20的解集为R;m0时,20恒
5、成立,满足题意;m0时,则;解得0m8;综上得,实数m的取值范围是故选:A【点睛】考查函数定义域的概念及求法,以及一元二次不等式的解集为R时,判别式需满足的条件3A解析:A【解析】【分析】根据指数幂与对数式的化简运算,结合函数图像即可比较大小.【详解】因为,令,函数图像如下图所示:则,所以当时, ,即 ,则,所以,即综上可知, 故选:A【点睛】本题考查了指数函数、对数函数与幂函数大小的比较,因为函数值都大于1,需借助函数图像及不等式性质比较大小,属于中档题.4C解析:C【解析】【分析】利用换元法求解复合函数的值域即可求得函数的“上界值”.【详解】令 则 故函数的“上界值”是1;故选C【点睛】本
6、题背景比较新颖,但其实质是考查复合函数的值域求解问题,属于基础题,解题的关键是利用复合函数的单调性法则判断其单调性再求值域或 通过换元法求解函数的值域.5B解析:B【解析】【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决【详解】时,即右移1个单位,图像变为原来的2倍如图所示:当时,令,整理得:,(舍),时,成立,即,故选B【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力6C解析:C【解析】【分析】求出函
7、数的定义域,然后利用复合函数法可求出函数的单调递增区间.【详解】解不等式,解得或,函数的定义域为.内层函数在区间上为减函数,在区间上为增函数,外层函数在上为减函数,由复合函数同增异减法可知,函数的单调递增区间为.故选:C.【点睛】本题考查对数型复合函数单调区间的求解,解题时应先求出函数的定义域,考查计算能力,属于中等题.7C解析:C【解析】【分析】画出的图像判断出两个函数图像只有一个交点,构造函数,利用零点存在性定理,判断出零点所在的区间【详解】画出的图像如下图所示,由图可知,两个函数图像只有一个交点,构造函数,根据零点存在性定理可知,的唯一零点在区间.故选:C【点睛】本小题主要考查方程的根,
8、函数的零点问题的求解,考查零点存在性定理的运用,考查数形结合的数学思想方法,属于中档题.8D解析:D【解析】【分析】利用不等式性质及函数单调性对选项依次求值域即可【详解】对于A:的值域为;对于B:,的值域为;对于C:的值域为;对于D:,的值域为;故选:D【点睛】此题主要考查函数值域的求法,考查不等式性质及函数单调性,是一道基础题9A解析:A【解析】试题分析:画出函数图像,因为正实数满足且,且在区间上的最大值为2,所以=2,由解得,即的值分别为,2故选A考点:本题主要考查对数函数的图象和性质点评:基础题,数形结合,画出函数图像,分析建立m,n的方程10C解析:C【解析】【分析】由可得,再通过A为
9、 的子集可得结果.【详解】由可知,所以,因为,所以,即,故选C.【点睛】本题考查不等式的解集和对数函数的定义域,以及集合之间的交集和补集的运算;若集合的元素已知,求解集合的交集、并集、补集时,可根据交集、并集、补集的定义求解.11A解析:A【解析】试题分析:对应的图形为以为圆心为半径的圆的上半部分,直线过定点,直线与半圆相切时斜率,过点时斜率,结合图形可知实数的范围是考点:1直线与圆的位置关系;2数形结合法12C解析:C【解析】【分析】【详解】对于一切成立,则等价为a对于一切x(0,)成立,即ax对于一切x(0,)成立,设y=x,则函数在区间(0,上是增函数x2=,a.故选C.点睛:函数问题经
展开阅读全文