(教师版)小学奥数5-3-3-质数与合数(三).专项练习及答案解析.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(教师版)小学奥数5-3-3-质数与合数(三).专项练习及答案解析.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教师版 小学 质数 合数 专项 练习 答案 解析
- 资源描述:
-
1、5-3-3.质数与合数(三)知识框架1. 掌握质数与合数的定义2. 能够用特殊的偶质数2与质数5解题3. 能够利用质数个位数的特点解题4. 质数、合数综合运用知识点拨一、质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数.要特别记住:0和1不是质数,也不是合数.常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点
2、: 值得注意的是很多题都会以质数2的特殊性为考点. 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.二、判断一个数是否为质数的方法根据定义如果能够找到一个小于p的质数q(均为整数),使得q能够整除p,那么p就不是质数,所以我们只要拿所有小于p的质数去除p就可以了;但是这样的计算量很大,对于不太大的p,我们可以先找一个大于且接近p的平方数,再列出所有不大于K的质数,用这些质数去除p,如没有能够除尽的那么p就为质数.例如:149很接近,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.例题精讲模块一、质数合数综合【例 1】 写出10个连续自
3、然数,它们个个都是合数 【考点】质数合数综合 【难度】2星 【题型】解答【解析】 在寻找质数的过程中,我们可以看出100以内最多可以写出7个连续的合数:90,91,92,93,94,95,96我们把筛选法继续运用下去,把考查的范围扩大一些就行了用筛选法可以求得在113与127之间共有13个都是合数的连续自然数:114,115,116,117,118,119,120,121,122,123,124,125,126同学们可以在这里随意截取10个即为答案可见本题的答案不唯一【答案】114,115,116,117,118,119,120,121,122,123【例 2】 老师可以把本题拓展为找更多个连
4、续的合数:找200个连续的自然数它们个个都是合数 【考点】质数合数综合 【难度】3星 【题型】解答【解析】 如果10个连续自然数中,第1个是2的倍数,第2个是3的倍数,第3个是4的倍数第10个是11的倍数,那么这10个数就都是合数又,m3,m11是11个连续整数,故只要m是2,3,11的公倍数,这10个连续整数就一定都是合数设m为2,3,4,11这10个数的最小公倍数m2,m3,m4,m11分别是2的倍数,3的倍数,4的倍数11的倍数,因此10个数都是合数所以我们可以找出2,3,411的最小公倍数27720,分别加上2,3,411,得出十个连续自然数27722,27723,2772427731
5、,他们分别是2,3,411的倍数,均为合数说明:我们还可以写出 (其中n!123n)这10个连续合数来同样,是m个连续的合数那么200个连续的自然数可以是:【答案】【例 3】 四个质数2、3、5、7的乘积为 ,经验证200到220之间仅有一个质数,请问这个质数是 。【考点】质数合数综合 【难度】3星 【题型】填空【关键词】学而思杯,6年级【解析】 四个质数乘积210;200到220的质数,因为210,所以,都是合数,所以只需要判断中谁是质数即可,209和211中211是质数。【答案】积为210,质数是211【例 4】 有人说:“任何7个连续整数中一定有质数”请你举一个例子,说明这句话是错的 【
6、考点】质数合数综合 【难度】3星 【题型】解答【解析】 略【答案】例如连续的7个整数:842、843、844、845、846、847、848分别能被2、3、4、5、6、7、8整除,就是说它们都不是质数有些同学可能会说这是怎么找出来的,翻质数表还是,我们注意到(n+1)!+2,(n+1)!+3,(n+1)!+4,(n+1)!+(n+1)这n个数分别能被2、3、4、(n+1)整除,它们是连续的n个合数其中n!表示从1一直乘到n的积,即123n【例 5】 如果一个数不能表示为三个不同合数的和,那么我们称这样的数为智康数,那么最大的智康数是几?【考点】质数合数综合 【难度】3星 【题型】解答【解析】
展开阅读全文