(教师版)小学奥数5-1-3-3-数阵图(三).专项练习及答案解析.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(教师版)小学奥数5-1-3-3-数阵图(三).专项练习及答案解析.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教师版 小学 数阵图 专项 练习 答案 解析
- 资源描述:
-
1、 5-1-3-3.数阵图教学目标1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题知识点拨.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填
2、数的范围;第三步:运用已经得到的信息进行尝试这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用例题精讲数阵图与数论【例 1】 把09这十个数字填到右图的圆圈内,使得五条线上的数字和构成一个等差数列,而且这个等差数列的各项之和为55,那么这个等差数列的公差有种可能的取值【考点】数阵图与数论 【难度】3星 【题型】填空【关键词】迎春杯,三年级,初赛,第8题【解析】 设顶点分别为A、B、C、D、E,有45+A+B+C+D+E=55,所以A+B+C+D+E=10,所以A、B、C、D、E分别只能是0-4中的一个数字.则除之外的另外5个数(即边上的)为45-10=35.设所形成的等差数
3、列的首项为a1,公差为d.利用求和公式5(a1a1+4d)2=55,得a1+2d=11,故大于等于0+1+5=6,且为奇数,只能取7、9或11,而对应的公差d分别为2、1和0.经试验都能填出来所以共有3中情况,公差分别为2、1、0.【答案】种可能【例 2】 将填入下图的中,使得任意两个相邻的数之和都不是,的倍数【考点】数阵图与数论 【难度】4星 【题型】填空 【解析】 根据题意可知的两边只能是与;的两边只能是与;3的两边只能是1、5或8;4的两边只能是7与9可以先将317-写出来,接下来7的后面只能是4,4的后面只能是9,9的后面只能是2,2的后面只能是6,可得:3174926-,还剩下5和8
4、两个数由于是7的倍数,所以接下来应该是5,这样可得:3174926583检验可知这样的填法符合题意【答案】3174926583【例 3】 在下面8个圆圈中分别填数字l,2,3,4,5,6,7,8(1已填出)从1开始顺时针走1步进入下一个圆圈,这个圆圈中若填n(n8)。则从这个圆圈开始顺时针走n步进入另一个圆圈依此下去,走7次恰好不重复地进入每个圆圈,最后进入的一个圆圈中写8请给出两种填法【考点】数阵图与数论 【难度】4星 【题型】填空【关键词】走美杯,5年级,决赛,第12题,15分【解析】 按顺时针方向:1,2,5,3,8,7,4,6或1,5,2,4,8,6,7,3或1,6,2,3,8,5,7
5、,4或1,6,4,2,8,7,5,3 (答对任一种给6分,总得分不超过12)由于无论如何填8都是最后一个填写,而填之前,已经走过了28步,因为 288=3余4,即8永远只能在最底下的圆圈里。顺推:试算,从1到8顺序填写发现可以,此时从1顺时针为1、2、5、3、8、7、4、6;逆推:8前面的一个填有2、3、5、6、 7共5种可能。假设为2,如上图,再往前一个数有3、4、5、7共4种可能,设为3,再前推一个数可能是4或6,设为4,依次类并排除错误的选择,可得1、5、2、 4、 8、6、7、3。【答案】1、5、2、 4、 8、6、7、3。【例 4】 在圆的5条直径的两端分别写着110(如图)。现在请
6、你调整一部分数的位置,但保留1、10、5、6不动,使任何两个相邻的数之和都等于直径另一端的相邻两数之和(画在另一个圆上)。【考点】数阵图与数论 【难度】5星 【题型】填空【关键词】走美杯,五年级,初赛,第4题【解析】 共6种【答案】【例 5】 图中是一个边长为1的正六边形,它被分成六个小三角形将4、6、8、10、12、14、16各一个填入7个圆圈之中相邻的两个小正三角形可以组成6个菱形,把每个菱形的四个顶点上的数相加,填在菱形的中心A、B、C、D、E、F位置上(例如:)已知A、B、C、D、E、F依次分别能被2、3、4、5、6、7整除,那么_ 【考点】数阵图与数论 【难度】5星 【题型】填空【关
7、键词】迎春杯,六年级,初赛,第12题【解析】 先考虑菱形顶点的和为3、6的倍数,7个数被3除的余数分别为1、0、2、1、0、2、1,可以得到中间数g=8或14,同样分析5的倍数,7的倍数,得到具体的填法(如图),agd=4810=320评注:采用余数分析法,找到关键数的填法。 【答案】【例 6】 在如图所示的圆圈中各填入一个自然数,使每条线段两端的两个数的差都不能被3整除。请问这样的填法存在吗?如存在,请给出一种填法;如不存在,请说明理由。【考点】数阵图与数论 【难度】4星 【题型】填空【关键词】希望杯,六年级,二试,第18题,10分【解析】 图中共有4个不同的数,每个数除以3的余数只可能有0
展开阅读全文