湘教版九年级数学下册第2章圆课件1.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《湘教版九年级数学下册第2章圆课件1.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湘教版 九年级 数学 下册 课件 下载 _九年级下册_湘教版(2024)_数学_初中
- 资源描述:
-
1、2.1 圆的对称性第2章 圆导入新课讲授新课当堂练习课堂小结九年级数学下(XJ)教学课件学习目标1.理解圆的有关概念及圆的对称性;(重点)2.掌握点与圆的位置关系的性质与判定(重点)如图所示,一些学生正在做投圈游戏,他们呈“一”字排开.问题这样的队形对每一人都公平吗?你认为他们应当怎样站队?情境引入不公平;四个人应该站在离玩偶距离相等的位置上.讲授新课讲授新课圆的概念一概念学习圆是到一定点的距离等于定长的所有点组成的图形.定长叫作半径.这个定点叫作圆心.OA圆也可以看成是一个动点绕一个定点旋转一周所形成的图形,定点叫作圆心.以点O为圆心的圆叫作圆O,记作 O定点与动点的连线段叫作半径.如图,点
2、O是圆心.线段OA的长度是一条半径.线段OA的长度也叫作半径,记作半径r.rOA概念学习典例精析例1 矩形ABCD的对角线AC、BD相交于O.求证:A、B、C、D在以O为圆心的同一圆上.ABCDO证明:四边形ABCD是矩形,AO=OC,OB=OD.又AC=BD,OA=OB=OC=OD.A、B、C、D在以O为圆心,以OA为半径的圆上.问题1:观察下图中点和圆的位置关系有哪几种?.o o.C.B.A点与圆的位置关系有三种:点在圆内,点在圆上,点在圆外.点和圆的位置关系二问题2 :设点到圆心的距离为d,圆的半径为r,量一量在点和圆三种不同位置关系时,d与r有怎样的数量关系?点P在 O内 点P在 O上
3、 点P在 O外 d d drPdPrd Prdr r=r反过来,由d与r的数量关系,怎样判定点与圆的位置关系?要点归纳点和圆的位置关系rPdPrd Prd点点P在在 O内内 dr 数形结合:数形结合:位置关系位置关系数量关系数量关系1.O的半径为10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与 O的位置关系是:点A在 ;点B在 ;点C在 .圆内圆上圆外典例精析2.圆心为O的两个同心圆,半径分别为1和2,若OP=,则点P在()A.大圆内 B.小圆内 C.小圆外 D.大圆内,小圆外oD3 u弦:COAB连接圆上任意两点的线段(如图中的AC,AB)叫做弦.经过圆
4、心的弦(如图中的AB)叫做直径 1.弦和直径都是线段.2.直径是弦,是经过圆心的特殊弦,是圆中最长的弦,但弦不一定是直径.注意圆的有关概念三u弧:COAB圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆劣弧与优弧 COAB半圆圆上任意两点间的部分叫做圆弧,简称弧,弧用符号“”表示.以A、B为端点的弧记作 AB ,读作“圆弧AB”或“弧AB”(小于半圆的弧叫做劣弧.如图中的AC ;(大于半圆的弧叫做优弧.如图中的ABC.(如图.(1)请写出以点A为端点的优弧及劣弧;(2)请写出以点A为端点的弦及直径.弦AF,AB,AC.其中弦AB又是直径.ABCEFDO劣弧:优弧:AF,(AD,(A
5、C,(AE.(AFE,(AFC,(AED,(ACD.(练一练要点归纳1.根据圆的定义,“圆”指的是“圆周”,而不是“圆面”2.直径是圆中最长的弦.p附图解释:COAB连接OC,在AOC中,根据三角形三边关系有AO+OCAC,而AB=2OA,AO=OC,所以ABAC.这两个圆问题3用一块硬纸板和一张薄的白纸分别画一个圆,它们的半径相等,把白纸放在硬纸板上面,使两个圆的圆心重合,观察这两个圆是否重合?重合圆的对称性四探究能够重合的两个圆叫作等圆,把能够互相重合的弧叫作等弧.概念学习问题4现在用一根大头针穿过这两个圆的圆心,让硬纸板保持不动,让白纸绕圆心旋转任意角度,观察旋转后,白纸上的圆是否仍然与
6、硬纸板上的圆重合?仍然重合问题5这体现圆具有什么样的性质?圆绕圆心旋转任意角度,都能与自身重合.特别地,将圆绕圆心旋转180时能与自身重合.圆是中心对称图形,圆心是它的对称中心.知识要点问题6在白纸的圆上面画任意一条直径,把白纸沿着这条直径所在的直线折叠观察圆的两部分是否互相重合?OABCDE能够重合你能讲出圆具有这种对称性的道理吗?圆是轴对称图形,任意一条直径所在的直线都是圆的对称轴.知识要点为什么车轮要做成圆形的?中心与路面距离相等中心与边缘距离相等中心与边缘距离不相等中心与路面距离不相等观察与思考 把车轮做成圆形,车轮上各点到车轮中心把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等
7、于车轮的半径,当车轮在(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不平面上滚动时,车轮中心与平面的距离保持不变,因此,当车辆在平坦的路上行驶时,坐车变,因此,当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆的人会感觉到非常平稳,这也是车轮都做成圆形的数学道理形的数学道理1.填空:(1)_是圆中最长的弦,它是_的2倍(2)图中有 条直径,条非直径的弦,圆中以A为一个端点的优弧有 条,劣弧有 条 直径半径一二四四当堂练习当堂练习ABCDOFE2.判断下列说法的正误,并说明理由或举反例.(1)弦是直径;(2)半圆是弧;(3)过圆心的线段是直径;
8、(4)过圆心的直线是直径;(5)半圆是最长的弧;(6)直径是最长的弦;(7)圆既是中心对称图形又是轴对称图形.3.正方形ABCD的边长为2cm,以A为圆心2cm为半径作 A,则点B在 A ;点C在 A ;点D在 A .上外上4.O的半径r为5,O为原点,点P的坐标为(3,4),),则点P与 O的位置关系为()A.在 O内 B.在 O上 C.在 O外 D.在 O上或 O外 B5.观察下列图形:请问以上三个图形中是轴对称图形的有_,是中心对称图形的有_(分别用以上三个图形的代号填空)6.一点和O上的最近点距离为4cm,最远的距离为10cm,则这个圆的半径是 .7cm或3cm定 义平面内到一定点的距
9、离等于定长的所有点组成的图形平面内一动点绕一定点旋转一周所形成的图形有关概念弦(直径)直径是圆中最 长 的 弦弧半圆是特殊的弧劣弧半 圆优弧等圆、等弧课堂小结课堂小结课堂小结课堂小结位 置 关 系 数 量 化点 与 圆 的位 置 关 系点在圆外点在圆上点在圆内d rd=rd CD,即CD2AB.CDABCEABCDDEABCDEO圆心角圆心角相等弧相等弦相等弦、弧、圆心角的关系定理在同圆或等圆中概念:顶点在圆心的角应用提醒要注意前提条件;要灵活转化.课堂小结课堂小结2.2 圆心角、圆周角第2章 圆导入新课讲授新课当堂练习课堂小结九年级数学下(XJ)教学课件第1课时 圆周角定理与推论1 2.2.
10、2 圆周角 学习目标1.理解圆周角的概念,会叙述并证明圆周角定理.2.理解圆周角与圆心角的关系并能运用圆周角定理解决简单的几何问题.(重点、难点)3.理解掌握圆周角定理的推论及其证明过程和运用.(难点)在射门过程中,球员射中球门的难易与它所处的位置B对球门AC的张角(ABC)有关.问题图中的ABC、ADC和AEC的顶点各在圆的什么位置?它们的两边和圆是什么关系?ABCDE情境引入导入新课导入新课足球射门.mp4顶点在圆上,并且两边都与圆相交的角叫作圆周角.(如BAC)我们把BAC叫作BC所对圆周角,BC叫作圆周角BAC所对的弧.讲授新课讲授新课圆周角的定义一概念学习COABCOBCOBAACO
11、ABCOBCOBAA练一练下列各图中的BAC是否为圆周角,并简述理由.(2)(1)(3)(5)(6)顶点不在圆上顶点不在圆上边AC没有和圆相交圆周角定理二图中的ABC、ADC和AEC都是AC所对的圆周角,我们知道在同圆或等圆中,相等的弧所对的圆心角相等,那么图中的三个圆周角有什么关系?ABCDE为了弄清楚这三个角的关系,我们先来研究一条弧所对的圆周角和圆心角的关系.我们猜测也相等ABCDE问题1 如图,点A、B、C是O 上的点,请问图中哪些是圆周角?哪些是圆心角?合作探究圆心角:BOC圆周角:BAC问题2 分别量出这些角的度数,你有什么发现?BOC=2BAC问题3 变动点A的位置,看看上述结论
12、是否依然成立?AAA变动点A的位置,圆周角的度数没有变化,它的度数恰好为同弧所对的圆心角的度数的一半.推导与验证已知:在圆O中,弧BC所对的圆周角是BAC,圆心角是BOC.求证:BAC=BOC.12圆心O在BAC的内部圆心O在BAC的一边上圆心O在BAC的外部圆心O与圆周角的位置有以下三种情况,我们一一讨论.n圆心O在BAC的一边上(特殊情形)OA=OCA=CBOC=A+C12BACBOCOABDOACDOABCDn圆心O在BAC的内部OACDOABD12BADBOD12DACDOC11()22BACBADDACBODDOCBOC OABDCOADCOABDCOADOABDCOADOABDn圆
13、心O在BAC的外部圆周角的度数等于它所对弧上的圆心角度数的一半.圆周角定理知识要点100AO20O90ABABBCC(1)(2)(3)求AOB求AOB求A练一练1.解:圆心角AOB 与圆周角ACB所对的弧为 ,例1 如图,OA,OB,OC都是 O的半径,AOB=50,BOC=70.求ACB和BAC度数.ABBCO.70 AACB=AOB=25.同理BAC=BOC=35.1212典例精析例2 如图,AB是 O的直径,C、D、E是 O上的点,则1+2等于()A90 B45 C180D60A例3 如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OFOC交圆O于点F,则BAF等于()A
14、12.5 B15 C20 D22.5解析:连接OB,四边形ABCO是平行四边形,OC=AB,又OA=OB=OC,OA=OB=AB,AOB为等边三角形,OFOC,OCAB,OFAB,BOF=AOF=30,由圆周角定理得BAF=BOF=15,故选:B讲授新课讲授新课圆周角定理的推论1三问题4 回归到课堂初始探讨的问题中,A、A1、A2和A3都是弧BC所对的圆周角,那么他们相等吗?因为A、A1、A2和A3所对弧上的圆心角均为BOC,由圆周角定理可知A=A1=A2=A3.A1A2A3要点归纳圆周角定理的推论1在同圆(或等圆)中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.完成下列填空 1=
15、.2=.3=.5=.如图,点A、B、C、D在同一个圆上,AC、BD为四边形ABCD的对角线.4867ABCDO1(2345678练一练例4 如图,O中,弦AB与CD交于点M,A=45,AMD=75,则B的度数是()A15B25C30D75典例精析C当堂练习当堂练习1.判断下列各图形中的角是不是圆周角.图图图图图2.指出图中的圆周角.AOBCACO ACB BCO OAB BAC OAC ABC O C B A3.如图,点B,C在 O上,且BO=BC,则圆周角BAC等于()D A.60B.50C.40D.304.如图,AB是 O的直径,C,D为圆上两点,AOC130,则D等于()A25B30C3
16、5D50A5.如图,在 O中,弧AB=弧AC,AOB50,则ADC的度数是()A50 B40C30 D25D6.如图,如图,AB是是 O的直径,的直径,AOD是圆心角,是圆心角,BCD是圆周角,若是圆周角,若BCD=25,则,则AOD=.130OABCD7.如图,已知圆心角AOB=100,则圆周角ACB=,ADB=.DAOCB130508.如图,在 O中,弧AB=弧CD,DCB=28,则ABC=_289.如图,分别求出图中x的大小.解:(1)同弧所对圆周角相等,x=60.(2)连接BF,F同弧所对圆周角相等,ABF=D=20,FBC=E=30.x=ABF+FBC=50.60 x3020 xAD
展开阅读全文