《等比数列的前N项和-》说课稿.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《等比数列的前N项和-》说课稿.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等比数列的前N项和- 等比数列 说课稿
- 资源描述:
-
1、等比数列的前N项和 说课稿一、教材分析教学内容等比数列的前项和是高中数学人教版第一册(上)第三章数列第五节的内容,教学大纲安排本节内容授课时间为两课时,本节课作为第一课时,重在研究等比数列的前项和公式的推导过程并充分揭示公式的结构特征、内在联系及公式的简单应用地位与作用等比数列的前项和是数列这一章中的一个重要内容, 就知识的应用价值上看,它是从大量数学问题和现实问题中抽象出来的一个模型,在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等,另外公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养就内容的人文价值来看,等比数列的前项
2、和公式的探究与推导需要学生观察、归纳、猜想、证明,这有助于培养学生的创新思维和探索精神,同时也是培养学生应用意识和数学能力的良好载体二、学情分析知识基础:前几节课学生已学习了等差数列求和,等比数列的定义及通项公式等内容,这为过渡到本节的学习起着铺垫作用.认知水平与能力:高一学生初步具有自主探究的能力,能在教师的引导下独立、合作地解决一些问题,但从学生的思维特点看,很容易把本节内容与等差数列前项和公式的形成、特点等方面进行类比,这是积极因素,应因势利导不利因素是:本节公式的推导与等差数列前项和公式的推导有所不同,这对学生的思维是一个突破,另外,对于这一特殊情况,学生也往往容易忽略,尤其是在后面使
3、用的过程中容易出错任教班级学生特点:我班学生基础知识较扎实、思维较活跃,能够较好的理解教材上的内容,能较好地在教师的引导下独立、合作地解决一些问题三、目标分析依据教学大纲的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标:1.教学目标知识与技能目标理解用错位相减法推导等比数列前项和公式的过程,掌握公式的特点,并在此基础上能初步应用公式解决与之有关的问题过程与方法目标通过对公式的研究过程,提高学生的建模意识及探究问题、分析与解决问题的能力,体会公式探求过程中从特殊到一般的思维方法,渗透方程思想、分类讨论思想及转化思想,优化思维品质情感、态度与价值目标通过学生自主对公式的探索,激
4、发学生的求知欲,鼓励学生大胆尝试、勇于探索、敢于创新,磨练思维品质,并从中获得成功的体验,感受思维的奇异美、结构的对称美、形式的简洁美、数学的严谨美.2.教学重点、难点重点:等比数列前项和公式的推导及公式的简单应用突出重点的方法:“抓三线、突重点”,即(一)知识技能线:问题情境公式推导公式运用;(二)过程方法线:从特殊、归纳猜想到一般错位相减法数学思想;(三)能力线:观察能力初步解决问题能力.难点:错位相减法的生成和等比数列前项和公式的运用突破难点的手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点,激发他们的兴趣,鼓励学生大胆猜想、积极探索,并及时给予肯定;二抓知识的切入点,从学生原有的
5、认知水平和所需的知识特点入手,教师在学生主体下给予适当的提示和指导.四、教学模式与教法、学法教学模式 :本课采用“探究发现”教学模式教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法引导学生的学法:突出探究、发现与交流五、教学过程分析(一)教学环节公式应用培养能力(11分钟)类比探索形成公式(20分钟)创设情景提出问题(4分钟)延伸拓展发散思维(5分钟)归纳总结加深理解(3分钟)解决问题前呼后应(2分钟)(二) 教学过程教学环节教学内容学生活动设计意图一、复习旧知,铺垫新知:【教师提问】(1) 等比数列定义及通项公式?(2)等比数列的项之间有何特点?学生:回忆回答问题(1)和(2)设计意
6、图:引导学生发现等比数列各项之间的特点:从第二项起每一项比前一项多乘以,从而为用“错位相减法”求等比数列前项和埋下伏笔创设情境提出问题类比探索形成公式类比探索形成公式深入探索形成公式深入探索形成公式公式运用培养能力公式运用培养能力延伸拓展发 散 思 维总 结 归 纳加 深 理 解解决情景问题前呼后应分层作业强化知识二、问题情境,引出课题:【多媒体动画演示】话说灰太狼想在森林里开一个公司,但苦于资金有限,于是准备去找喜羊羊投资,喜羊羊一口答应“行,从今天开始我连续60天往你的公司注入资金,第一天投资10000元,第二天投资20000元,第三天投资30000元,总之以后每天都比上一天多投资1000
7、0元,但作为回报,在投资的第一天起你必须返还我1元钱,第二天返还我2元钱即后一天返还的钱数为前一天的两倍,60天后我们两清”灰太狼一听,两眼一转,心里越想越美【教师提问】(1) 灰太狼占大便宜了吗?(2) 怎么求式?(用追问的方式引出课题)式学生会化简求和,对式学生知道是等比数列前项和的问题但却不知怎样化简计算!探究一:如何求和【教师提问】(1)能否逐一相加得结果?(2)那有什么简单方法?引导学生回忆:等差数列求和的重要方法是倒序相加法,剖析倒序相加法的本质即整体设元,构造等式,利用方程的思想化繁为简,把不易求和的问题转化为易于求和的问题,从而求和的实质是减少了项.那现在用这种办法还行吗?若不
8、行,那该怎样简化运算?能否类比倒序相加的本质,根据等比数列项之间的特点,也构造一个式子,通过两式运算来解决问题?通过学生回答: 指出法一实质就是利用了,但此法不具备一般性,如果把上式中数字2换为3或其它的数则不行了指出法二和法三的共同点就是充分利用了等比数列项之间的特点 构造式子,通过两式运算来解决问题而这就是本堂课我要给大家介绍的一种很重要的求和方法错位相减法,在此处先不着急介绍“错位相减法”的要点,只让学生有个大致印象,在后面应用中再来强调接着教师再顺势引导学生将问题一般化,类比联想解决问题探究二:【教师提问】设等比数列的首项为注意:学生已有上面问题的处理经验,肯定有不少学生会想到“错位相
9、减法”,此时教师可放手让学生自主探究、讨论,并请学生发言 将写成: ,两边同时乘以公比后会得到:,两个等式相减后,哪些项被消去,还剩下哪些项,剩下项的符号有没有改变?这些都是用错位相减法的关键所在,让学生先思考,再讨论,最后用多媒体给予突出强调,加深印象!根据前面探究一不少学生也想到两边同时乘以后两式作差得结果这时我顺势引导:用错位相减法构造等式时两边除乘以,还可以乘其他的数,例如乘原则是构造的式子能和原式相减、相消后剩余的项较少,较易计算,所以可视其情况确定乘什么数,一般情况是乘以公比两等式作差得到:时,肯定会有学生直接得到,我先不着急指出错误,看有没有同学可以主动发现,若没有学生发现这个问
展开阅读全文