(5套打包)沈阳市初三九年级数学上期末考试测试卷(解析版).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(5套打包)沈阳市初三九年级数学上期末考试测试卷(解析版).docx》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 5套打包 打包 沈阳市 初三 九年级 数学 期末考试 测试 解析 下载 _考试试卷_数学_初中
- 资源描述:
-
1、九年级(上)数学期末考试题(答案)一选择题(共10小题,满分30分,每小题3分)1若关于x的一元二次方程(a+1)x2+x+a210的一个根是0,则a的值为()A1B1C1D02不解方程,判别方程2x23x3的根的情况()A有两个相等的实数根B有两个不相等的实数根C有一个实数根D无实数根3若圆锥的侧面展开图是个半圆,则该圆锥的侧面积与全面积之比为()ABCD4如图,在ABC中,BAC90,ABAC4,以点C为中心,把ABC逆时针旋转45,得到ABC,则图中阴影部分的面积为()A2B2C4D45当axa+1时,函数yx22x+1的最小值为4,则a的值为()A2B4C4或3D2或36如图,AB为O
2、的直径,弦CDAB,连结OD,AC,若CAO70,则BOD的度数为()A110B140C145D1507如图,两个反比例函数y1(其中k10)和y2在第一象限内的图象依次是C1和C2,点P在C1上矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EFx轴于F点,且图中四边形BOAP的面积为6,则EF:AC为()A:1B2:C2:1D29:148如图,四边形ABCD内接于O,F是上一点,且,连接CF并延长交AD的延长线于点E,连接AC若ABC105,BAC30,则E的度数为()A45B50C55D609“如果二次函数yax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx
3、+c0有两个不相等的实数根”请根据你对这句话的理解,解决下面问题:若m、n(mn)是关于x的方程1(xa)(xb)0的两根,且ab,则a、b、m、n的大小关系是()AmabnBamnbCambnDmanb10如图,以线段AB为边分别作直角三角形ABC和等边三角形ABD,其中ACB90连接CD,当CD的长度最大时,此时CAB的大小是()A75B45C30D15二填空题(共6小题,满分18分,每小题3分)11若x290,则x 12将抛物线yx2+2x向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的表达式为 ;13x1,x2是方程x2+2x30的两个根,则代数式x12+3x1+x2 14
4、如图,在等腰ABC中,ABAC,B30以点B为旋转中心,旋转30,点A、C分别落在点A、C处,直线AC、AC交于点D,那么的值为 15如图,PA、PB分别切O于点A、B,若P70,点C为O上任一动点,则C的大小为 16已知二次函数y(xh)2+1(h为常数),在自变量x的值满足1x3的情况下,与其对应的函数值y的最小值为5,则h的值为 三解答题(共8小题,满分72分)17解方程:(1)x2+4x3(2)a2+3a+10(用公式法)18如图,在ACB中,ACAB,CAB90,CDA45,CD3,AD4,求BD的长19已知关于x的一元二次方程x2+3xm0有实数根(1)求m的取值范围(2)若两实数
5、根分别为x1和x2,且x12+x2211,求m的值20某同学报名参加学校秋季运动会,有以下5个项目可供选择:径赛项目:100m、200m、1000m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用T1、T2表示)(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P为 ;(2)该同学从5个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1,利用列表法或树状图加以说明;(3)该同学从5个项目中任选两个,则两个项目都是径赛项目的概率P2为 21如图,圆形靠在墙角的截面图,A、B分别为O的切点,BCAC,点P在上以2/s的速度由A点向点B运动(A、B点除外),连接AP、BP、
6、BA(1)当PBA28,求OAP的度数;(2)若点P不在AO的延长线上,请写出OAP与PBA之间的关系;(3)当点P运动几秒时,APB为等腰三角形22如图,一次函数y1kx+b的图象与反比例函数的图象交于点A(2,5),C(5,n),交y轴于点B,交x轴于点D(1)求反比例函数和一次函数y1kx+b的表达式;(2)连接OA,OC,求AOC的面积;(3)根据图象,直接写出y1y2时x的取值范围23某商品的进价为每件50元当售价为每件70元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的
7、利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?24如图,已知二次函数yax2+bx3a经过点A(1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由2018-2019学年湖北省鄂州市梁子湖区沼山镇中学九年级(上)期末数学试卷参考答案与试题解析一选择题(共10小题,满分30分,每小题3分)1【分析】把x0代入方程(a+
8、1)x2+x+a210得a210,然后解关于a的方程后利用一元二次方程的定义确定满足条件的a的值【解答】解:把x0代入方程(a+1)x2+x+a210得a210,解得a11,a21,而a+10,所以a1故选:A【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解2【分析】先把方程化为一般式得到2x23x30,再计算(3)242(3)18+240,然后根据的意义判断方程根的情况【解答】解:方程整理得2x23x30,(3)242(3)18+240,方程有两个不相等的实数根故选:B【点评】本题考查了一元二次方程ax2+bx+c0(a0)的根的判别式b24ac
9、:当0,方程有两个不相等的实数根;当0,方程有两个相等的实数根;当0,方程没有实数根3【分析】首先设出圆锥的底面半径及母线长,根据侧面展开图是个半圆确定二者之间的关系,从而表示出侧面积及全面积后求出比值即可【解答】解:设这个圆锥的底面半径为r,母线长为l,则2rl,l2r,侧面积为l2(2r)22r2,全面积为:r2+2r23r2,该圆锥的侧面积与全面积之比为:2r2:3r2,故选:B【点评】本题考查了圆锥的计算及几何体的展开图的知识,解题的关键是能够设出圆锥的底面半径、母线并根据侧面展开图是个半圆确定二者之间的关系4【分析】根据阴影部分的面积是(扇形CBB的面积CAB的面积)+(ABC的面积
10、扇形CAA的面积),代入数值解答即可【解答】解:在ABC中,BAC90,ABAC4,BC,ACBACB45,阴影部分的面积2,故选:B【点评】本题考查了扇形面积公式的应用,注意:圆心角为n,半径为r的扇形的面积为S5【分析】利用二次函数图象上点的坐标特征找出当y4时x的值,结合当axa+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论【解答】解:当y4时,有x22x+14,解得:x11,x23当axa+1时,函数有最小值4,a3或a+11,a3或a2,故选:D【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y4时x的值是解题
11、的关键6【分析】根据题意求出C的度数,根据圆周角定理求出AOD的度数,根据邻补角的概念求出答案【解答】解:CDAB,CAO70,C20,AOD40,BOD140,故选:B【点评】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键7【分析】首先根据反比例函数y2的解析式可得到SODBSOAC3,再由阴影部分面积为6可得到S矩形PDOC9,从而得到图象C1的函数关系式为y,再算出EOF的面积,可以得到AOC与EOF的面积比,然后证明EOFAOC,根据对应边之比等于面积比的平方可得到EF:AC的值【解答】解:A、B反比例函数y2的
12、图象上,SODBSOAC3,P在反比例函数y1的图象上,S矩形PDOCk16+9,图象C1的函数关系式为y,E点在图象C1上,SEOF9,3,ACx轴,EFx轴,ACEF,EOFAOC,故选:A【点评】此题主要考查了反比例函数系数k的几何意义,以及相似三角形的性质,关键是掌握在反比例函数y图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|;在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变8【分析】先根据圆内接四边形的性质求出ADC的度数,再由圆周角定理得出DCE的度数,根据三角形外角的性质即可得出结
13、论【解答】解:四边形ABCD内接于O,ABC105,ADC180ABC18010575,BAC30,DCEBAC30,EADCDCE753045故选:A【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键9【分析】由m、n(mn)是关于x的方程1(xa)(xb)0的两根可得出二次函数y(xa)(xb)1的图象与x轴交于点(m,0)、(n,0),将y(xa)(xb)1的图象往上平移一个单位可得二次函数y(xa)(xb)的图象,画出两函数图象,观察函数图象即可得出a、b、m、n的大小关系【解答】解:m、n(mn)是关于x的方程1(xa)(xb)0的两根,二次函数y(x
14、a)(xb)1的图象与x轴交于点(m,0)、(n,0),将y(xa)(xb)1的图象往上平移一个单位可得二次函数y(xa)(xb)的图象,二次函数y(xa)(xb)的图象与x轴交于点(a,0)、(b,0)画出两函数图象,观察函数图象可知:mabn故选:A【点评】本题考查了抛物线与x轴的交点,画出两函数图象,利用数形结合解决问题是解题的关键10【分析】利用圆周角定理结合点到直线的距离得出C在半圆的中点时,此时当CD的长度最大,进而得出答案【解答】解:如图所示:AB长一定,只有C点距离AB距离最大,则CD的长度最大,只有C点在C位置,即C在半圆的中点时,此时当CD的长度最大,故此时ACBC,CAB
15、的大小是45故选:B【点评】此题主要考查了圆周角定理以及点到直线的距离,得出C点位置是解题关键二填空题(共6小题,满分18分,每小题3分)11【分析】直接利用开平方法解方程得出答案【解答】解:x290,x29,x3故答案为:3【点评】此题主要考查了直接开平方法解方程,正确开平方运算是解题关键12【分析】先把yx2+2x配成顶点式,再利用顶点式写出平移后的抛物线的解析式【解答】解:yx2+2x(x+1)21,此抛物线的顶点坐标为(1,1),把点(1,1)向左平移2个单位长度,再向下平移3个单位长度后所得对应点的坐标为(3,4),所以平移后得到的抛物线的解析式为y(x+3)24故答案为:y(x+3
16、)24【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式13【分析】先根据根与系数的关系得到x1+x22,再利用x1是方程x2+2x30的根得到x12+2x130,即x12+2x13,则x12+3x1+x2x12+2x1+x1+x2,然后利用整体代入得方法计算【解答】解:x1,x2是方程x2+2x30的两个根,x12+2x130,即x12+2x13,x1+x22,则x12+3x1+x2x12+2x1+x1+x23
17、21,故答案为:1【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c0(a0)的两根时,x1+x2,x1x2也考查了一元二次方程解的定义14【分析】作AHBC于H,如图,设AH1,计算出AB2,BH,则BC2,分类讨论:当ABC绕点B顺时针旋转30得到ABC,如图1,利用旋转的性质得ABACBC30,BCBC2,CC30,则BEC90,再计算出BEBC,AE2,接着利用DAB60得到AD2AE2(2),于是可计算出的值;当ABC绕点B逆时针旋转30得到ABC,如图2,证明ADCC得到ADAC22,然后计算的值【解答】解:作AHBC于H,如图,设AH1,ABAC,BHC
18、H,在RtABH中,ABC30,AB2AH2,BHAH,BC2,当ABC绕点B顺时针旋转30得到ABC,如图1,AC交AB于E,ABACBC30,BCBC2,CC30,ABC60,BEC90,在RtBCE中,BEBC,AE2,DABABC+C60,AD2AE2(2),2;当ABC绕点B逆时针旋转30得到ABC,如图2,ABACBC30,BCBC2,CC30,CBC60,ADC30,ADCC,ADACBCAB22,1,综上所述,的值为1或2故答案为1或2【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等腰三角形的性质
19、和含30度的直角三角形三边的关系15【分析】首先连接OA,OB,由PA、PB分别切O于点A、B,根据切线的性质可得:OAPA,OBPB,然后由四边形的内角和等于360,求得AOB的度数,又由圆周角定理,即可求得答案【解答】解:连接OA,OB,PA、PB分别切O于点A、B,OAPA,OBPB,即PAOPBO90,AOB360PAOPPBO360907090110,CAOB55同理可得:当点C在上时,C18055125故答案为:55或125【点评】此题考查了切线的性质以及圆周角定理此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用16【分析】由解析式可知该函数在xh时取得最小值1、xh
20、时,y随x的增大而增大、当xh时,y随x的增大而减小,根据1x3时,函数的最小值为5可分如下两种情况:若h1x3,x1时,y取得最小值5;若1x3h,当x3时,y取得最小值5,分别列出关于h的方程求解即可【解答】解:当xh时,y随x的增大而增大,当xh时,y随x的增大而减小,若h1x3,x1时,y取得最小值5,可得:(1h)2+15,解得:h1或h3(舍);若1x3h,当x3时,y取得最小值5,可得:(3h)2+15,解得:h5或h1(舍)综上,h的值为1或5,故答案为1或5【点评】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键三解答题(共8小题,满分72分)1
展开阅读全文