线段的垂直平分线的性质和判定-(优质课)获奖课件-(优质课)获奖课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《线段的垂直平分线的性质和判定-(优质课)获奖课件-(优质课)获奖课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线段 垂直平分线 性质 判定 优质课 获奖 课件
- 资源描述:
-
1、13131 1轴对称轴对称131.2线段的垂直平分线的性质线段的垂直平分线的性质(2课时课时)第1课时线段的垂直平分线的性质与判定掌握线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题重点线段的垂直平分线的性质和判定,能灵活运用线段的垂直平分线的性质和判定解题难点灵活运用线段的垂直平分线的性质和判定解题一、问题导入我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴那么,线段的垂直平分线有什么性质呢?这节课我们就来研究它二、探究新知(一)线段的垂直平分线的性质教师出示教材第61页探究,让学生测量,思考有什么发现?如图,直线l垂直平分线段AB,P1,P2,P3是l上
2、的点,分别量一量点P1,P2,P3到点A与点B的距离,你有什么发现?学生回答,教师小结:线段垂直平分线上的点与这条线段两个端点的距离相等性质的证明:教师讲解题意并在黑板上绘出图形:上述问题用数学语言可以这样表示:如图,设直线MN是线段AB的垂直平分线,点C是垂足,点P是直线MN上任意一点,连接PA,PB,我们要证明的是PAPB.教师分析证明思路:图中有两个直角三角形,APC和BPC,只要证明这两个三角形全等,便可证得PAPB.教师要求学生自己写已知,求证,自己证明学生证明完后教师板书证明过程供学生对照已知:MNAB,垂足为点C,ACBC,点P是直线MN上任意一点求证:PAPB.证明:在APC和
3、BPC中,PCPC(公共边),PCBPCA(垂直定义),ACBC(已知),APC BPC(SAS)PAPB(全等三角形的对应边相等)因为点P是线段的垂直平分线上一点,于是就有:线段垂直平分线上的点与这条线段两个端点的距离相等(二)线段的垂直平分线的判定你能写出上面这个命题的逆命题吗?它是真命题吗?这个命题不是“如果那么”的形状,要写出它的逆命题,需分析命题的条件和结论,将原命题写成“如果那么”的形式,逆命题就容易写出鼓励学生找出原命题的条件和结论原命题的条件是“有一个点是线段垂直平分线上的点”,结论是“这个点与这条线段两个端点的距离相等”此时,逆命题就很容易写出来“如果有一个点与线段两个端点的
4、距离相等,那么这个点在这条线段的垂直平分线上”写出逆命题后,就想到判断它的真假如果真,则需证明它;如果假,则需用反例说明请同学们自行在练习册上完成学生给出了如下的四种证法已知:线段AB,点P是平面内一点,且PAPB.求证:P点在AB的垂直平分线上证法一过点P作已知线段AB的垂线PC,PAPB,PCPC,RtPAC RtPBC(HL)ACBC,即P点在AB的垂直平分线上证法二取AB的中点C,过P,C作直线PAPB,PCPC,ACCB,APC BPC(SSS)PCAPCB(全等三角形的对应角相等)又PCAPCB180,PCAPCB90,即PCAB,P点在AB的垂直平分线上证法三过P点作APB的平分
5、线PAPB,12,PCPC,APC BPC(SAS)ACBC,PCAPCB(全等三角形的对应边相等,对应角相等)又PCAPCB180,PCAPCB90,P点在AB的垂直平分线上证法四过P作线段AB的垂直平分线PC.ACCB,PCAPCB90,P在AB的垂直平分线上四种证法由学生表述后,有学生提问:“前三个同学的证明是正确的,而第四个同学的证明我有点弄不懂”师生共析:如图(1),PDAB,D是垂足,但D不平分AB;如图(2),PD平分AB,但PD不垂直于AB.这说明一般情况下,“过P作AB的垂直平分线”是不可能实现的,所以第四个同学的证法是错误的从同学们的推理证明过程可知线段的垂直平分线的性质的
6、逆命题是真命题,我们把它称为线段的垂直平分线的判定要作出线段的垂直平分线,根据垂直平分线的判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上,那么我们必须找到两个与线段两个端点距离相等的点,这样才能确定已知线段的垂直平分线下面我们一同来写出已知、求作、作法,体会作法中每一步的依据例1尺规作图:经过已知直线外一点作这条直线的垂线已知:直线AB和AB外一点C.(如下图)求作:AB的垂线,使它经过点C.师:根据上面作法中的步骤,想一想,为什么直线CF就是所求作的垂线?请与同伴进行交流生:从作法的第(2)(3)步可知CDCE,DFEF,C,F都在AB的垂直平分线上(线段的垂直平分线的判定)
7、CF就是线段AB的垂直平分线(两点确定一条直线)师:我们曾用刻度尺找线段的中点,当我们学习了线段的垂直平分线的作法时,一旦垂直平分线作出,线段与线段的垂直平分线的交点就是线段AB的中点,所以我们也用这种方法找线段的中点三、课堂练习教材第62页练习第1,2题四、课堂小结本节课我们学习了线段的垂直平分线的性质和判定,并学会了用尺规作线段的垂直平分线五、布置作业1教材习题13.1第6题2补充题:(1)下图是某跨河大桥的斜拉索,图中PAPB,POAB,则必有AOBO,为什么?(2)如左下图,ABC中,AC16 cm,DE为AB的垂直平分线,BCE的周长为26 cm.求BC的长(3)有A,B,C三个村庄
8、(如右上图),现准备建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置本节证明了线段的中垂线的性质定理及判定定理、用尺规作线段的中垂线在课堂中,学生证明过程、作图方法原理的理解及掌握都比较好,但要强调作业中不用三角板等工具而要用尺规来作图,解决实际问题时可以直接用定理而不是借助于全等11112 2与三角形有关的角与三角形有关的角11112.22.2三角形的外角三角形的外角1了解三角形的外角2知道三角形的外角等于与它不相邻的两个内角的和3学会运用简单的说理来计算三角形相关的角重点三角形外角的性质难点运用三角形外角性质进行有关计算时能准确地推理一、复习引入什么是三角形的内角?它是由什么组
9、成的?三角形内角和定理的内容是什么?教师提出问题,学生举手回答问题二、探究新知1探究三角形外角的概念教师布置学生自学教材第14页最后一段话的内容,然后完成以下问题:(1)举例说明什么是三角形的外角(上黑板画图说明)(2)如图,ADB,BPC,BDC,DPC分别是哪个三角形的外角?2探究三角形外角的性质老师布置学生自学教材第15页思考的内容,然后同学间进行交流、讨论,归纳三角形的外角有什么性质,并提出以下问题:你能否用证明的方法说明你所归纳的性质?学生归纳得出三角形外角的性质:三角形的外角等于与它不相邻的两个内角的和三、举例分析例1如图,BAE,CBF,ACD是ABC的三个外角,它们的和是多少?
10、教师出示教材例4,先让学生进行分析,教师可以适当加以引导学生,将三角形的外角转化为三角形的内角,然后师生共同写出规范的解答过程解:由三角形的一个外角等于与它不相邻的两个内角的和,得BAE23,CBF13,ACD12.所以BAECBFACD2(123)由123180,得BAECBFACD2180360.四、练习与小结练习:教材练习教师布置练习,学生举手回答小结:谈谈你对三角形外角的认识教师引导学生谈谈对三角形外角的认识主要从定义和性质两个方面入手五、布置作业习题11.2第5,6,8题,选做题:第11题通过三角形的内角和回顾引入,然后通过学生的预习,在他们的理解基础上,去学习三角形的外角的定义,这
展开阅读全文