等差数列的前n项和的最值课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《等差数列的前n项和的最值课件.pptx》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等差数列 课件
- 资源描述:
-
1、等差数列的前等差数列的前n n项和公式项和公式:2)1nnaanS (dnnnaSn2)11 (形式形式1:1:形式形式2:2:复习回顾第1页/共24页一、常用数列的求和方法:一、常用数列的求和方法:222211 1+2+3+n=n n+12n+16 23333n n+12 1+2+3+n=2122334nn+11n+11111n+=a aa aa aa aa a(3)(3)裂项法:设裂项法:设aan n 是等差数列,公差是等差数列,公差d0d0nn+1nn+11111=-a ad aa其其中中新课讲授第2页/共24页 n1111S=+1 33 55 72n-12n+1求求和和n111 11
2、111S=1-+-+-+-233 55 72n-1 2n+111=1-=22n+1n2n 1 (4)(4)倒序相加法:用于与首末两端等距离的和倒序相加法:用于与首末两端等距离的和相等。相等。第3页/共24页.将等差数列前将等差数列前n n项和公式项和公式 看作是一个关于看作是一个关于n n的函数,这个函数有什么的函数,这个函数有什么特点?特点?2)1(1dnnnaSn S Sn n是关于是关于n n的二次式,常数项为的二次式,常数项为零。(零。(d d可以为零)可以为零)21()22nddSnan则则 Sn=An2+Bn令令1,22ddABa新课讲授第4页/共24页 结论结论1:若数列:若数列
3、aan n 的前的前n n项和为项和为S Sn n=pn=pn2 2+qn+qn,(p,q(p,q为常数为常数)是关于是关于n n的二次式,则数列的二次式,则数列aan n 是等差数列。是等差数列。aan n 是等差数列是等差数列S Sn n=pn=pn2 2+qn(p,q+qn(p,q为常数为常数,d=2p),d=2p)当当d00时时,S Sn n是常数项为零的二次函数是常数项为零的二次函数若若C0,则数列,则数列an不是等差数列。不是等差数列。若若C=0,则,则an为等差数列;为等差数列;结论结论2:设数列:设数列an的前的前n项和为项和为 Sn=An2+Bn+C,(A,B,C是常数)是常
4、数)当当d=0=0时时,S Sn n=na=na1 1不不是二次函数是二次函数第5页/共24页第6页/共24页第7页/共24页第8页/共24页 例1 若一个等差数列前3项和为34,最后三项和为146,且所有项的和为390,则这个数列共有_项。13 例2 已知数列an中Sn=2n2+3n,求证:an是等差数列.第9页/共24页例1、若等差数列an前4项和是2,前9项和是6,求其前n 项和的公式。,dada89219634214211解之得:15715181da解:设首项为a1,公差为d,则有:。n3043n307)157(1)n(n21n1518S2n 第10页/共24页 设 Sn=an2+bn
5、,依题意得:S4=2,S9=6,99644222baba即解之得:,3043307 ban。nSn30433072 另解:第11页/共24页等差数列的前等差数列的前n项的最值问题项的最值问题例例1.已知等差数列已知等差数列an中中,a1=13且且S3=S11,求求n取何值时取何值时,Sn取最大值取最大值.解法解法1由由S3=S11得得113 133 211 1311 1022dd d=2113(1)(2)2nSnn n 214nn 2(7)49n 当当n=7时时,Sn取最大值取最大值49.第12页/共24页等差数列的前等差数列的前n项的最值问题项的最值问题例例1.已知等差数列已知等差数列an中
展开阅读全文