空间解析几何和线性代数资料课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《空间解析几何和线性代数资料课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 解析几何 线性代数 资料 课件
- 资源描述:
-
1、一、主要内容一、主要内容(一)向量代数(一)向量代数(二)空间解析几何(二)空间解析几何向量的向量的线性运算线性运算向量的向量的表示法表示法向量积向量积数量积数量积混合积混合积向量的积向量的积向量概念向量概念(一)向量代数(一)向量代数1 1、向量的概念、向量的概念定义定义:既有大小又有方向的量称为向量既有大小又有方向的量称为向量.自由向量、自由向量、相等向量、相等向量、负向量、负向量、向径向径.重要概念重要概念:零向量、零向量、向量的模、向量的模、单位向量、单位向量、平行向量、平行向量、(1)加法:加法:cba 2 2、向量的线性运算、向量的线性运算dba ab(2)减法:减法:cba db
2、a (3)向量与数的乘法:向量与数的乘法:设设 是一个数,向量是一个数,向量a与与 的乘积的乘积a 规定为规定为,0)1(a 与与a同向,同向,|aa ,0)2(0 a,0)3(a 与与a反向,反向,|aa 向量的分解式:向量的分解式:,zyxaaaa .,轴上的投影轴上的投影分别为向量在分别为向量在其中其中zyxaaazyxkajaiaazyx 在三个坐标轴上的分向量:在三个坐标轴上的分向量:kajaiazyx,向量的坐标表示式:向量的坐标表示式:向量的坐标:向量的坐标:zyxaaa,3 3、向量的表示法、向量的表示法向量的加减法、向量与数的乘积等的坐标表达式向量的加减法、向量与数的乘积等的
3、坐标表达式,zyxaaaa ,zyxbbbb ,zzyyxxbabababa ,zzyyxxbabababa ,zyxaaaa kbajbaibazzyyxx)()()(kbajbaibazzyyxx)()()(kajaiazyx)()()(222|zyxaaaa 向量模长的坐标表示式向量模长的坐标表示式222coszyxxaaaa 222coszyxyaaaa 222coszyxzaaaa 向量方向余弦的坐标表示式向量方向余弦的坐标表示式)1coscoscos(222 4 4、数量积、数量积 cos|baba 其其中中 为为a与与b的的夹夹角角(点积、内积点积、内积)zzyyxxbababa
4、ba 数量积的坐标表达式数量积的坐标表达式ba 0 zzyyxxbababa222222coszyxzyxzzyyxxbbbaaabababa 两向量夹角余弦的坐标表示式两向量夹角余弦的坐标表示式5 5、向量积、向量积 sin|bac 其其中中 为为a与与b的的夹夹角角c的方向既垂直于的方向既垂直于a,又垂直于,又垂直于b,指向符合,指向符合右手系右手系.(叉积、外积叉积、外积)kbabajbabaibabaxyyxzxxzyzzy)()()(向量积的坐标表达式向量积的坐标表达式ba zyxzyxbbbaaakjiba ba/zzyyxxbababa cbacba )(zyxzyxzyxccc
5、bbbaaa 6 6、混合积、混合积直直 线线曲面曲面曲线曲线平平 面面参数方程参数方程旋转曲面旋转曲面柱柱 面面二次曲面二次曲面一般方程一般方程参数方程参数方程一般方程一般方程对称式方程对称式方程 点法式方程点法式方程一般方程一般方程空间直角坐标系空间直角坐标系(二)空间解析几何(二)空间解析几何x横轴横轴y纵轴纵轴z竖轴竖轴 定点定点o1 1、空间直角坐标系、空间直角坐标系空间的点空间的点有序数组有序数组),(zyxxyoz空空间间直直角角坐坐标标系系共有一个原点共有一个原点,三个坐标轴三个坐标轴,三个坐标面三个坐标面,八个卦限八个卦限.21221221221zzyyxxMM 它们距离为它
6、们距离为设设),(1111zyxM、),(2222zyxM为为空空间间两两点点两点间距离公式两点间距离公式:曲面方程的定义:曲面方程的定义:如果曲面如果曲面S与三元方程与三元方程0),(zyxF有下述关系:有下述关系:(1)曲面曲面S上任一点的坐标都满足方程;上任一点的坐标都满足方程;那那么么,方方程程0),(zyxF就就叫叫做做曲曲面面S的的方方程程,而而曲曲面面S就就叫叫做做方方程程的的图图形形.2 2、曲面、曲面(2)不在曲面不在曲面S上的点的坐标都不满足方程;上的点的坐标都不满足方程;研究空间曲面的两个基本问题:研究空间曲面的两个基本问题:(2)已知坐标间的关系式,研究曲面形状)已知坐
7、标间的关系式,研究曲面形状.(1)已知曲面作为点的轨迹时,求曲面方程)已知曲面作为点的轨迹时,求曲面方程.1 旋转曲面旋转曲面定义:以一条平面曲线绕定义:以一条平面曲线绕其平面上的一条直线旋转其平面上的一条直线旋转一周所成的曲面称之一周所成的曲面称之.这条定直线叫旋转曲面的这条定直线叫旋转曲面的轴轴.方程特点方程特点:0),()2(0),()1(00),(:2222 yzxfyLzyxfxLzyxfL方程为方程为轴旋转所成的旋转曲面轴旋转所成的旋转曲面绕绕曲线曲线方程为方程为轴旋转所成的旋转曲面轴旋转所成的旋转曲面绕绕曲线曲线设有平面曲线设有平面曲线(2)圆锥面)圆锥面222zyx (1)球面
8、)球面(3)旋转双曲面)旋转双曲面1222222 czayax1222 zyx2 柱面柱面定义:定义:平行于定直线并沿定曲线平行于定直线并沿定曲线C移动的直线移动的直线L所形成的曲面称之所形成的曲面称之.这条定曲线叫柱面这条定曲线叫柱面的的准线准线,动直线叫,动直线叫柱面的柱面的母线母线.从柱面方程看柱面的特征:从柱面方程看柱面的特征:只只含含yx,而而缺缺z的的方方程程0),(yxF,在在空空间间直直角角坐坐标标系系中中表表示示母母线线平平行行于于z轴轴的的柱柱面面,其其准准线线为为xoy面面上上曲曲线线C.(1)平面平面 xy (3)抛物柱面抛物柱面)0(22 ppyx(4)椭圆柱面椭圆柱
9、面 12222 byax(2)圆柱面圆柱面 222Ryx 3 二次曲面二次曲面定义定义:三元二次方程所表示的曲面称为二次曲面三元二次方程所表示的曲面称为二次曲面.(1)椭球面)椭球面1222222 czbyaxzqypx 2222(2)椭圆抛物面)椭圆抛物面)(同号同号与与qpzqypx 2222(3)马鞍面)马鞍面)(同号同号与与qp(4)单叶双曲面)单叶双曲面1222222 czbyax(5)圆锥面)圆锥面222zyx 3 3、空间曲线、空间曲线 0),(0),(zyxGzyxF1 空间曲线的一般方程空间曲线的一般方程 )()()(tzztyytxx2 空间曲线的参数方程空间曲线的参数方程
10、 22222)21()21(1yxyxz 2sinsin2121cos21tztytx如图空间曲线如图空间曲线一般方程为一般方程为参数方程为参数方程为3 空间曲线在坐标面上的投影空间曲线在坐标面上的投影 0),(0),(zyxGzyxF消去变量消去变量z后得:后得:0),(yxH设空间曲线的一般方程:设空间曲线的一般方程:00),(zyxH曲线在曲线在 面上的投影曲线为面上的投影曲线为xoy 00),(xzyR 00),(yzxT面上的投影曲线面上的投影曲线yoz面上的投影曲线面上的投影曲线xoz如图如图:投影曲线的研究过程投影曲线的研究过程.空间曲线空间曲线投影曲线投影曲线投影柱面投影柱面4
11、 空间立体或曲面在坐标面上的投影空间立体或曲面在坐标面上的投影空间立体空间立体曲面曲面4 4、平面、平面,CBAn ),(0000zyxMxyzon0MM1 平面的点法式方程平面的点法式方程0)()()(000 zzCyyBxxA2 平面的一般方程平面的一般方程0 DCzByAx1 czbyax3 平面的截距式方程平面的截距式方程xyzoabc0:11111 DzCyBxA0:22222 DzCyBxA4 平面的夹角平面的夹角222222212121212121|cosCBACBACCBBAA 5 两平面位置特征:两平面位置特征:21)1(0212121 CCBBAA21)2(/212121C
展开阅读全文