书签 分享 收藏 举报 版权申诉 / 31
上传文档赚钱

类型2020届汕头高三二模理科数学试题含答案.pdf

  • 上传人(卖家):副主任
  • 文档编号:587187
  • 上传时间:2020-06-18
  • 格式:PDF
  • 页数:31
  • 大小:1.13MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2020届汕头高三二模理科数学试题含答案.pdf》由用户(副主任)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2020 汕头 高三二模 理科 数学试题 答案 下载 _模拟试题_高考专区_数学_高中
    资源描述:

    1、1 2020 年汕头市普通高考第二次模拟考试试题年汕头市普通高考第二次模拟考试试题 理科数学理科数学 第卷选择题第卷选择题 一、选择题:本题共一、选择题:本题共12小题,每小题小题,每小题5分,共分,共60分分.在每小题给出的四个选项中,只有一在每小题给出的四个选项中,只有一 项是符合题目要求的项是符合题目要求的. 1已知集合 2 |650Ax xx, |3Bx x,则 R AC B () A.1,)B.1,3)C.(,5D.(3,5 2已知,m nR,i是虚数单位,若()(1)miini,则|mni() A.5 B.2 C.3D.1 3数列 n a中,首项 1 2a ,且点 1 , nn a

    2、 a 在直线2xy上,则数列 n a的前n项和 n S等于() A. 31 n B. 2 3nn C. 31 n D. 2 3nn 4已知椭圆 22 22 1(0,0) xy ab ab 的离心率为 1 2 ,直线ykx与该椭圆交于A、B两 点,分别过A、B向x轴作垂线,若垂足恰为椭圆的两个焦点,则k等于() A. 3 2 B. 2 3 C. 1 2 D. 2 5已知非零向量a ,b ,若|2 |ab ,且(2 )aab ,则a 与b 的夹角为() A. 6 B. 4 C. 3 D. 3 4 6 “众志成城,抗击疫情,一方有难,八方支援” ,在此次抗击疫情过程中,各省市都派出 援鄂医疗队. 假

    3、设汕头市选派6名主任医生,3名护士,组成三个医疗小组分配到湖北甲、 乙、 丙三地进行医疗支援, 每个小组包括2名主任医生和1名护士, 则不同的分配方案有 () A. 90种 B. 300种 C. 540种 D. 3240种 7已知aR,则“ 2a ”是“ 4 2 4 a x x 展开式各项系数和为 0”的() A. 必要不充分条件 B. 充分不必要条件 C. 充要条件 D. 既不充分也不必要条件 8已知函数( )sinln|f xxxx,则( )yf x的大致图象为() 2 9如图,在正四棱柱 1111 ABCDABC D中,2AB , 1 3AA ,点G为正方形ABCD 的中心,点E为 11

    4、 AD的中点,点F为AE的中点,则() A. C、E、F、G四点共面,且CFEG. B. C、E、F、G四点共面,且CFEG. C. C、E、F、G四点不共面,且CFEG. D. C、E、F、G四点不共面,且CFEG. 10梅赛德斯奔驰(Mercedes Benz)创立于 1900 年,是世界 上最成功的高档汽车品牌之一,其经典的“三叉星”商标象征着陆 上、 水上和空中的机械化.已知该商标由 1 个圆形和 6 个全等的三角 形组成(如图) ,点O为圆心,150ABC ,若在圆内部任取一 点,则此点取自阴影部分的概率为() A. 2 33 2 B. 2 33 4 C. 6 39 2 D. 6 3

    5、9 4 11 已知函数 2 ( )2cos1(0) 212 x f x 的最小正周期为, 若, 2 ,2 m n , 3 且( )( )9f mf n,则mn的最大值为() A. 2 B. 5 2 C. 3 D. 7 2 12若函数 2 ( )(2) xx f xaeaex,0a ,若( )f x有两个零点,则a的取值范围为 () A. (0,1) B. (0,1 C. 1 ( , e e D. 1 , e e 第卷非选择题第卷非选择题 二、填空题:本题共4小题,每小题5分,共20分. 13已知变量x,y满足约束条件 20 1 70 xy x xy ,则 y x 的最大值是. 14已知双曲线

    6、22 22 :1(0,0) xy Cab ab 的左、右焦点分别为 1 F, 2 F,过 2 F作渐近线 的一条垂线,若该垂线恰好与以 1 F为圆心, 1 OF为半径的圆相切,则该双曲线的离心率为. 15已知数列 n a满足 1 1 2 a , 1nn aan ,则 n a n 的最小值为. 16已知三校锥PABC的四个顶点在球O的球面上,PA平面ABC,ABC是边长 为2的正三角形,D、E、F分别是AB、BC、CP的中点,且 3 cos 4 DFE,则球O 的表面积为. 三、三、解答题:共解答题:共70分分.解答应写出文字说明、证明过程或演算步骤解答应写出文字说明、证明过程或演算步骤.第第1

    7、721题为必考题,题为必考题, 每个试题考生都必须作答每个试题考生都必须作答.第第22、23题为选考题,考生根据要求作答题为选考题,考生根据要求作答. (一)必考题:共(一)必考题:共60分分. 17 (本小题满分 12 分) ABC内角A,B,C的对边分别为a,b,c,已知cossin 2 BC baB . (1)求角A的大小; (2)D是边BC上一点,且2BDDC,2AD ,求ABC面积的最大值. 18 (本小题满分 12 分) 如图,在直角ABC中,90ACB ,2AC ,3BC ,P,G分别是AB,BC上 一点,且满足CP平分ACB,2CGGB,以CP为折痕将ACP折起,使点A到达点

    8、4 D的位置,且平面DCP 平面BCP (1)证明:CPDG; (2)求二面角BCDP的正弦值. 19 (本小题满分 12 分) 在平面直角坐标系xOy中,O为坐标原点,(0,1)F,( , 1)()N ttR, 已知MFN是以FN 为底边,且边MN平行于y轴的等腰三角形. (1)求动点M的轨迹C的方程; (2) 已知直线l交x轴于点P, 且与曲线C相切于点A, 点B在曲线C上, 且直线/ /PBy轴, 点P关于点B的对称点为点Q,试判断点A、Q、O三点是否共线,并说明理由. 20 (本小题满分 12 分) 冠状病毒是一个大型病毒家族,已知可引起感冒以及中东呼吸综合征(MERS)和严重 急性呼

    9、吸综合征(SARS)等较严重疾病. 而今年出现的新型冠状病毒(COVID-19)是以前从 未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、 发热、 咳嗽、 气促和呼吸困难等.在较严重病例中感染可导致肺奖、 严重急性呼吸综合征、 贤衰竭, 甚至死亡. 核酸检测是诊断新冠肺炎的重要依据, 首先取病人的唾液或咽拭子的样本, 再提取唾液 或咽拭子样本里的遗传物质,如果有病毒,样本检测会呈现阳性,否则为阴性.根据统计发 现,疑似病例核酸检测呈阳性的概率为(01)pp,现有4例疑似病例,分别对其取样、 检测,多个样本检测时,既可以逐个化验,也可以将若干个样本混合在一起化验,混合

    10、样本 中只要有病毒,则混合样本化验结果就会呈阳性,若混合样本呈阳性,则将该组中各个样本 再逐个化验;若混合样本呈阴性,则该组各个样本均为阴性. 现有以下三种方案: 方案一:逐个化验; 方案二:四个样本混在一起化验; 方案三: 平均分成两组化验. 5 在新冠肺炎爆发初期,由于检查能力不足,化检次数的期望值越小,则方案越“优”. (1)若 1 4 p ,求2个疑似病例样本混合化验结果为阳性的概率; (2)若 1 4 p ,现将该4例疑似病例样本进行化验,请问:方案一、二, 三中哪个最“优”? (3)若对4例疑似病例样本进行化验,且“方案二”比“方案一”更“优” ,求p的取值 范围. 21 (本小题

    11、满分 12 分) 已知函数 2 ( )(3)(2) x f xxea x,aR (1)讨论( )f x的单调性; (2)若 1 x, 2 x是函数( )f x的两个不同零点,证明: 12 4xx. (二)选考题:共(二)选考题:共10分分.请考生在第请考生在第22、23题中任选一题作答题中任选一题作答.如果多做,则按所作的第一如果多做,则按所作的第一 题计分题计分. 22 【选修44:坐标系与参数方程】 (本小题满分 10 分) 以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为 2 cossin60,曲线C的参数方程为: 2cos ( ) 3sin x y 为参数. (

    12、1)求直线l的直角坐标方程和曲线C的普通方程; (2)直线l与x轴、y轴分别交于A,B两点,设点P为C上的一点,水PAB面积的最 小值. 23 【选修45:不等式选讲】 (本小题满分 10 分) 已知实数a、b满足: 22 1ab. (1)求证: | 1 |1| ab ab ; (2)若0a b ,求 33 ()abab的最小值. 试卷第 1页,总 26页 2020 汕头市第二次模拟考试解析汕头市第二次模拟考试解析 一、单选题一、单选题 1已知集合已知集合 2 |650Ax xx, |3Bx x,则,则 R AC B () A1,)B1,3)C(,5D(3,5 【答案】【答案】C 【解析】【解

    13、析】 【分析】 先求出集合 A,然后求出 R AC B 即可. 【详解】 由已知可得 2 65015Ax xxxx,3Bx x, 则 R AC B (,5 故选:C 【点睛】 本题考查了集合的运算以及二次不等式的求解,是一道基础题. 2已知已知,m nR,i是虚数单位,若是虚数单位,若()(1)miini,则,则|mni() A 5 B2C 3 D1 【答案】【答案】A 【解析】【解析】 【分析】 ()(1)mii整理为abi的形式,根据复数相等的充要条件求出 m、n,代入|mni 求模即可. 【详解】 ()(1)(1)(1)miimmini, 101 12 mm mnn , 2 |12125

    14、mnii . 故选:A 【点睛】 本题考查复数代数形式的乘法运算、复数相等的充要条件、复数的模,属于基础题. 3 数列数列 n a中中, 首项首项 1 2a , 且点且点 1 , nn a a 在直线在直线2xy上上, 则数列则数列 n a的前的前n项项 试卷第 2页,总 26页 和和 n S等于(等于() A31 n B 2 3nn C31 n D 2 3nn 【答案】【答案】B 【解析】【解析】 【分析】 点的坐标代入直线方程可得 1 2 nn aa ,推出数列 n a为等差数列,求出首项与公 差代入等差数列的前 n 项和公式即可得解. 【详解】 因为点 1 , nn a a 在直线2xy

    15、上,所以 11 =22 nnnn aaaa , 又 1 2a , 所以数列 n a是以 2 为首项,2 为公差的等差数列, 则 * 42 () n an nN, 所以数列 n a的前n项和 2 (22 3 4) 2 n nn Snn . 故选:B 【点睛】 本题考查由递推公式证明数列为等差数列、等差数列的前 n 项和,属于基础题. 4已知椭圆已知椭圆 22 22 1(0,0) xy ab ab 的离心率为的离心率为 1 2 ,直线直线y kx 与该椭圆交于与该椭圆交于A、B 两点,分别过两点,分别过A、B向向x轴作垂线,若垂足恰为椭圆的两个焦点,则轴作垂线,若垂足恰为椭圆的两个焦点,则k等于(

    16、等于() A 3 2 B 2 3 C 1 2 D2 【答案】【答案】A 【解析】【解析】 【分析】 联立直线方程与椭圆方程求出 x 即交点的横坐标,根据题意可得交点的横坐标为c, 由离心率可得2 ,3ac bc,三式联立即可求出 k. 【详解】 联立 22222 22 2 2 2 ( 1 ) ykx ba kxa b xy ab ,则 222 ab x ba k , 由题意知 222 ab c ba k , 试卷第 3页,总 26页 1 2 c e a , 22 2 ,3ac bacc , 代入可得 4 2 222 123 342 c ck cc k . 故选:A 【点睛】 本题考查直线与椭圆

    17、的位置关系、椭圆的几何性质,属于基础题. 5已知非零向量已知非零向量a ,b ,若若|2 |ab ,且且(2 )aab ,则则a 与与b 的夹角为的夹角为() A 6 B 4 C 3 D 3 4 【答案】【答案】B 【解析】【解析】 【分析】 由向量垂直可得(2 )0aab , 结合数量积的定义表达式可求出 2 cos, 2 a a b a b , 又|2 |ab ,从而可求出夹角的余弦值,进而可求夹角的大小. 【详解】 解:因为(2 )aab ,所以 22 (2 )22cos,0aabaa baa ba b , 因为|2 |ab ,所以 2 2 cos, 2 22 aa a b a bb ,

    18、 a,b0, ,a,b 4 . 故选:B. 【点睛】 本题考查了向量的数量积,考查了向量垂直的关系,考查了向量夹角的求解.本题的关 键是由垂直求出数量积为 0. 6“众志成城,抗击疫情,一方有难,八方支援众志成城,抗击疫情,一方有难,八方支援”,在此次抗击疫情过程中,各省市都 ,在此次抗击疫情过程中,各省市都 派出援鄂医疗队派出援鄂医疗队. 假设汕头市选派假设汕头市选派6名主任医生,名主任医生,3名护士,组成三个医疗小组分配到名护士,组成三个医疗小组分配到 湖北甲湖北甲、乙乙、丙三地进行医疗支援丙三地进行医疗支援,每个小组包括每个小组包括2名主任医生和名主任医生和1名护士名护士,则不同的则不同

    19、的 分配方案有(分配方案有() A90种种B300种种 C540种种D3240种种 【答案】【答案】C 试卷第 4页,总 26页 【解析】【解析】 【分析】 先求把 6 名医生平均分成 3 组的方法, 再求将 3 组医生与 3 名护士进行全排列组成医疗 小组的方法,最后求把 3 个医疗小组分到 3 个地方的方法,最后求积即可. 【详解】 解:分三步进行: (1)将 6 名医生分成 3 组,有 222 642 3 3 15 CCC A 种方法, (2)将分好的三组与三名女护士进行全排列,组成三个医疗小组有 3 3 6A 种方法, (3)将分好的三个医疗小组进行全排列,对应于甲、乙、丙三地有 3

    20、3 6A 种方法, 则不同的分配方案有15 6 6540 种方法, 故选:C. 【点睛】 本题考查排列、组合的应用,重点考查分组分配问题,涉及分步计数原理的应用,属于 基础题 7已知已知aR,则,则“ 2a ”是是“ 4 2 4 a x x 展开式各项系数和为展开式各项系数和为 0”的(的() A必要不充分条件必要不充分条件 B充分不必要条件充分不必要条件 C充要条件充要条件 D既不充分也不必要条件既不充分也不必要条件 【答案】【答案】B 【解析】【解析】 【分析】 令1x ,即可求出 4 2 4 a x x 展开式各项系数和,进而可以求出此时2a ,然后 利用充分条件、必要条件及充要条件的判

    21、断知识即可求解 【详解】 令1x , 即可求出 4 2 4 a x x 展开式各项系数和, 因为该展开式的各项系数之和为 0, 即有 24 (4)0a,得2a , 则有“ 2a ”是“ 4 2 4 a x x 展开式各项系数和为 0”的充分性条件成立, 试卷第 5页,总 26页 但是,当 4 2 4 a x x 展开式各项系数之和为 0 时,2a ,必要性条件不成立. 故选:B 【点睛】 本题考查二项式定理、充分条件、必要条件及充要条件的判断知识,考查考生的分析问 题的能力和计算能力,难度较易. 8已知函数已知函数( )sinln |f xxxx,则,则( )yf x的大致图象为(的大致图象为

    22、() AB CD 【答案】【答案】C 【解析】【解析】 【分析】 根据函数的奇偶性和特殊值进行排除可得结果 【详解】 ( )sinln |f xxxx是偶函数,排除 B,D (2 )0ln20f,排除 A 故选:C 【点睛】 已知函数的解析式判断图象的大体形状时,可根据函数的奇偶性,判断图象的对称性: 如奇函数在对称的区间上单调性一致,偶函数在对称的区间上单调性相反,这是判断图 象时常用的方法之一 9 如图如图, 在正四棱柱在正四棱柱 1111 ABCDABC D中中, 2AB , 1 3AA , 点点G为正方形为正方形ABCD 试卷第 6页,总 26页 的中心,点的中心,点E为为 11 AD

    23、的中点,点的中点,点F为为AE的中点,则(的中点,则() AC、E、F、G四点共面,且四点共面,且CF EG. BC、E、F、G四点共面,且四点共面,且CF EG. CC、E、F、G四点不共面,且四点不共面,且CF EG. DC、E、F、G四点不共面,且四点不共面,且CF EG. 【答案】【答案】B 【解析】【解析】 【分析】 连接AC,EC,由三角形的中位线定理知,/FG EC,从而可求出C、E、F、G四 点共面. 以D为原点, 1 ,DA DC DD为 , ,x y z轴建立坐标系,求出 1,0, 3E,1,1,0G,0,2,0C, 33 ,0, 22 F , 从而可求出7CF ,2EG

    24、, 进而可选出正确答案. 【详解】 解:如图,连接AC,则G在AC上且AGGC;连接EC. 因为,AFFE AGGC,所以由三角形的中位线定理可知,/FG EC, 所以C、E、F、G四点共面.以D为原点, 1 ,DA DC DD为 , ,x y z轴如图建立坐标 系, 则2,0,0A,1,0, 3E,1,1,0G,0,2,0C, 33 ,0, 22 F , 所以 2 2 2 33 27 22 CF , 2 22 0132EGCF , 故选: B. 试卷第 7页,总 26页 【点睛】 本题考查了点是否共面的判定,考查了空间中线段长度的求解.本题的关键是证明 /FG EC.证明几点共面时,常用的思

    25、路是证明线段平行或者相交. 10梅赛德斯梅赛德斯奔驰(奔驰(Mercedes Benz)创立于)创立于 1900 年,是世界上最成功的高档汽车 年,是世界上最成功的高档汽车 品牌之一,其经典的品牌之一,其经典的“三叉星三叉星”商标象征着陆上、水上和空中的机械化商标象征着陆上、水上和空中的机械化. 已知该商标由已知该商标由 1 个圆形和个圆形和 6 个全等的三角形组成(如图个全等的三角形组成(如图) ,点,点O为圆心,为圆心,150ABC ,若在圆内部,若在圆内部 任取一点,则此点取自阴影部分的概率为(任取一点,则此点取自阴影部分的概率为() A 2 33 2 B 2 33 4 C 6 39 2

    26、 D 6 39 4 【答案】【答案】D 【解析】【解析】 【分析】 先由正弦定理及三角形面积公式求出阴影部分面积, 再结合几何概型中的面积型求概率 即可. 【详解】 解:由图可知:60AOB ,105ABO ,15BAO , 不妨设4AO , 试卷第 8页,总 26页 在AOB中,由正弦定理可得 sinsin AOBO ABOBAO , 则 62 4 4 84 3 62 4 BO , 则阴影部分的面积为 1 3sin24 336 2 AOBOBOA, 则在圆内部任取一点,则此点取自阴影部分的概率为 24 3366 39 164 , 故选:D. 【点睛】 本题考查了正弦定理及三角形面积公式,重点

    27、考查了几何概型中的面积型,属中档题. 11已知函数已知函数 2 ( )2cos1(0) 212 x f x 的最小正周期为的最小正周期为,若,若 , 2 ,2 m n ,且,且( )( )9f mf n,则,则mn的最大值为(的最大值为() A2B 5 2 C3D 7 2 【答案】【答案】C 【解析】【解析】 【分析】 利用降幂公式进行化简根据最小正周期可得2,根据余弦函数的有界性可得 fx 的值域为1,3, 将题意可转化为m与n是方程cos 21 6 x 的根, 解出方程根据x 的范围得出 max x和 min x,进而可得结果. 【详解】 由已知可得( )1 cos1cos2 66 f x

    28、xx fx的最小正周期为, 2 ,即2, cos 22 6 fxx ,1cos21 6 x , fx的值域为1,3,故若 9f mf n, 则 3f mf n,m与n是方程 3f x , 试卷第 9页,总 26页 即cos 21 6 x 的根,所以22, 6 xkkZ , 解得, 12 xkkZ ,2 ,2x , maxmin 1323 , 1212 xx , m n 的最大值为 1323 3 1212 , 故选:C. 【点睛】 本题主要考查了通过降幂公式化简三角函数式以及三角函数的有界性, 将题意转化为关 于余弦函数的方程是解题的关键,属于中档题. 12若函数若函数 2 ( )(2) xx

    29、f xaeaex,0a ,若,若 ( )f x有两个零点,则 有两个零点,则a的取值范的取值范 围为(围为() A(0,1)B(0,1C 1 ( , e e D 1 , e e 【答案】【答案】A 【解析】【解析】 【分析】 根据函数的单调性可知函数 ( )f x有两个零点等价于( ln )0fa ,解这个关于a的不 等式即可. 【详解】 解:由题意得,( )(1)(21) xx fxaee,0a ,可得函数 ( )f x的单调性如下: 当lnxa 时,( )0fx , ( )f x单调递减,当 lnxa 时,( )0fx , ( )f x单 调递增,可知,当lnxa 时, ( )f x取得最

    30、小值,最小值为 1 ( ln )1lnfaa a . 当1a 时,由于( ln )0fa,故 ( )f x只有一个零点; 当(1,)a时,由于 1 1ln0a a ,即( ln )0fa,故( )f x没有零点; (0,1)a时,由于 1 1ln0a a ,即( ln )0fa, 又 422 ( 2)(2)2220faeaee ,故 ( )f x在(, ln )a 上有一个零 点, 令( ) x g xex,则( )1 x g xe,当0x 时,( )0g x ,( )g x在(0,)上单调 试卷第 10页,总 26页 递增,故当0x 时,( )(0)1g xg,即1(0) x exx. 设整

    31、数n满足 31 ln(1)lnln0na aa ,则 3 ln(1) 3 1 n a ee a 3 ( )(2) (1)20 nnnn f neaeane aanen a , 故 ( )f x在( ln ,)a内有一个零点. 综上所述,a的取值范围是(0,1) 答案选:A 【点睛】 本题考查函数零点问题, 研究函数零点问题常常与研究对应方程的实数根问题相互转化, 已知函数 ( )f x有两个零点求参数a的取值范围,第一种方法是分离参数,构造不含参 数的函数;第二种方法是直接对含参函数进行研究. 二、填空题二、填空题 13若若 , x y满足约束条件 满足约束条件 20, 1, 70, xy x

    32、 xy 则则 y x 的最大值是的最大值是_ 【答案】【答案】6 【解析】【解析】 如图,作出不等式组 20, 1, 70, xy x xy 所表示的平面区域, y x 可以理解为过可行域中一点 , x y与原点0,0的直线的斜率,点, x y在点B 1,6处时 y x 取得最大值 6. 点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、 准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线 的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端 点或边界上取得. 试卷第 11页,总 26页 14已知双曲线已知双曲线 22

    33、 22 :1(0,0) xy Cab ab 的左、右焦点分别为的左、右焦点分别为 1 F, 2 F,过,过 2 F作渐近作渐近 线的一条垂线线的一条垂线,若该垂线恰好与以若该垂线恰好与以 1 F为圆心为圆心, 1 OF为半径的圆相切为半径的圆相切,则该双曲线的离则该双曲线的离 心率为心率为_. 【答案】【答案】2 【解析】【解析】 【分析】 设过 2 F作渐近线的一条垂线为l:yk xc, 根据该垂线恰好与以 1 F为圆心, 1 OF 为半径的圆相切, 根据点到直线距离公式可得 2 2 a b , 由 2 2 1 cb e aa , 即可求得答案. 【详解】 双曲线 22 22 :1(0,0)

    34、 xy Cab ab 的左、右焦点分别为 1 F, 2 F 可得: 1 ,0Fc , 2 ,0Fc 过 2 F作渐近线的一条垂线,不妨设与 b yx a 垂直 设过 2 F作渐近线的一条垂线为l:yk xc 根据题意画出图象, 根据图象可得k存在 由两条两条直线垂直可得:1 b a k 故 a k b a yxc b 又 1 F为圆心, 1 OF为半径的圆 试卷第 12页,总 26页 2 22 xcyc 根据 a yxc b 与 2 22 xcyc相切 根据点到直线距离公式可得: 2 1 a b a b cc c 整理可得: 2 2 1 3 a b ,即 2 2 3 b a 双曲线的离心率为

    35、2 2 1132 cb e aa 故答案为:2. 【点睛】 本题考查了双曲线的几何性质离心率的求解,其中求双曲线的离心率(或范围),常 见有两种方法,方法一:求出 , a c ,代入公式 c e a ;方法二:只需要根据一个条件 得到关于, ,a b c的齐次式, 转化为 , a c的齐次式, 然后转化为关于e的方程, 即可得e的 值(范围) 15已知数列已知数列 n a满足满足 1 1 2 a , 1nn naa ,则,则 n a n 的最小值为的最小值为_. 【答案】【答案】 1 2 . 【解析】【解析】 【分析】 结合累加法可求出 11 , 22 n n n anN ,进而可得 11 2

    36、22 n an nn ,结合基本 不等式可求出其最小值. 【详解】 解:因为 1nn naa ,则当2,nnN 时, 21 32 1 1 2 . 1 nn aa aa aan ,将1n 个式子相 加得, 1 121 123.11,2, 22 n nnn n aannnnN , 试卷第 13页,总 26页 所以 1 111 ,2, 222 n n nn n aannN , 当1n 时, 11 111 222 , 所以 11 , 22 n n n anN ,则 11111 2 2222 222 11 22n ann nnn n n n , 当且仅当 1 22 n n ,即1n 时等号成立,即 n

    37、a n 的最小值为 1 2 . 故答案为: 1 2 . 【点睛】 本题考查了应用累加法求通项公式,考查了等差数列的前n项和,考查了基本不等式. 本题的关键是求出通项公式.求数列的通项公式时,常用的方法有:累加法、累乘法、 构造新数列法、公式法. 16已知三校锥已知三校锥PABC的四个顶点在球的四个顶点在球O的球面上, 的球面上,PA 平面平面ABC,ABC是是 边长为边长为2的正三角形的正三角形,D、E、F分别是分别是AB、BC、CP的中点的中点,且且 3 cos 4 DFE, 则球则球O的表面积为的表面积为_. 【答案】【答案】 28 3 【解析】【解析】 【分析】 根据已知条件,作图建立直

    38、角坐标系,利用 3 cos 4 DFE求出PA,然后根据垂面模 型构建出直角三角形求出外接球的半径R,然后即可求解 【详解】 试卷第 14页,总 26页 如图,根据题意,以 A 为原点, CB为x轴方向,AE 为y轴方向,AP 为z轴方向, 建立空间直角坐标系,设2PAa,由2ABBCAC,可得 (0,0,0)A ,(1, 3,0)B,( 1, 3,0)C ,(0,0,2 )Pa, 因为D、E、F分别是AB、BC、 CP的中点,得 13 ( ,0) 22 D ,(0,0, 3)E, 13 (, ) 22 Fa ,可得 1DE , 2 1DFa, 2 1EFa, 222 3 cos 42 DFE

    39、FDE DFE DF EF 2 2 22 1 22 a a ,解得1a , 解得2PA , 根据外接圆垂面模型的应用, 可找到如图的球心O和ABC的外接圆圆 心H,且必有 1 =1 2 OHPA,且HC为ABC的外接圆的半径,因为ABC是边 长为2的正三角形,且 122 3 2 sin603 HC ,设外接球半径OCR,则在 Rt OHC中,根据勾股定理,得 222 2 47 1 33 ROCOHHC ,则可求得 2 7 3 R ,则球O的表面积为 2 28 4 3 R 答案: 28 3 【点睛】 本题考查空间直角坐标系的运用,以及锥体垂面模型的应用,属于中档题 三、解答题三、解答题 试卷第

    40、15页,总 26页 17ABC内角内角A,B,C的对边分别为的对边分别为a,b,c,已知,已知cossin 2 BC baB . (1)求角)求角A的大小;的大小; (2)D是边是边BC上一点,且上一点,且2BDDC,2AD ,求,求ABC面积的最大值面积的最大值. 【答案【答案】 (1) 2 3 A ; (2) 9 3 2 . 【解析】【解析】 【分析】 (1)利用正弦定理将所给等式化简为cossin 2 BC A ,再利用三角函数诱导公式及 二倍角公式再次化简可得 1 cos 22 A , 由 2 A 的范围即可求得角 A; (2) 根据题意以AB 、 AC 作为基底表示出向量AD , 等

    41、式两边同时平方再利用基本不等式即可求得18bc , 代入三角形面积公式 12 sin 23 ABC Sbc即可求得面积的最大值. 【详解】 (1)因为cossin 2 BC baB ,由正弦定理可得sincossinsin 2 BC BAB , 又sin0B ,所以cossin 2 BC A ,因为ABC, 所以coscossin 222 BCAA ,则sinsin2sincos 222 AAA A, 又sin0 2 A ,所以 1 cos 22 A , 因为(0) 22 A ,所以 2 233 A A ; (2)根据题意可得 2212 () 3333 ADABBDABBCABACABABAC

    42、 , 所以 222 2 12144 () 33999 ADABACABAB ACAC , 即 2222 1 36=4()42422 2 cbcbcbbcbc,所以18bc ,当且仅当 3,6bc等号成立 所以 12139 3 sin18 23222 ABC Sbc ,ABC面积的最大值为 9 3 2 . 试卷第 16页,总 26页 【点睛】 本题考查正弦定理、三角形面积公式、利用基本不等式求面积的最大值、向量在几何中 的应用,涉及三角函数诱导公式及二倍角公式,属于中档题. 18如图如图,在直角在直角ABC中中,90ACB , ,2AC ,3BC ,P、G分别是分别是AB、 BC上一点,且满足上一点,且满足CP平分平分ACB,2CGGB,以,以CP为折痕将为折痕将ACP折起,使折起,使 点点A到达点到达点D的位置,且平面的位置,且平面DCP 平面平面BCP. (1)证明:)证明:CPDG; (2)求二面角)求二面角BCDP的正弦值的正弦值. 【答案【答案】 (1)证明见解析; (2) 6 3 . 【解析】【解析】 【分析】 (1)在直角ABC中,连接AG交PC于点E,利用等腰三角形三线合一的性质可得 出AGPC,则在三棱锥DBCP中,可得出PCDE,PCEG,可推导出 PC 平面DEG,进而可得出CPDG; (2)推导出DE 平面BCP,然后以点E为坐标原点,EG

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2020届汕头高三二模理科数学试题含答案.pdf
    链接地址:https://www.163wenku.com/p-587187.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库