小学奥数工程问题题型大全含答案(DOC 41页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《小学奥数工程问题题型大全含答案(DOC 41页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学奥数工程问题题型大全含答案DOC 41页 小学 工程 问题 题型 大全 答案 DOC 41
- 资源描述:
-
1、奥数之工程问题 在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是 工作量=工作效率时间. 在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”。 工程问题方法总结:一:基本数量关系:工效时间=工作总量 二:基本特点:设工作总量为“1”,工效=1/时间 三:基本方法:算术方法、整体思想、组合法、比例方法、方程方法、假设法 四:基本思想:分做合想、合做分想。 五:类型与方法:一:分做合想:1.合想,2.假设法,3.巧抓变化(比例),4.假设法。二:按劳分配思路:每人每天工效每人工作量按比例
2、分配 三:休息请假: 方法:1.分想:划分工作量。2.假设法:假设不休息。3.方程法 四:周期工程休息与周期: 1. 已知条件的顺序:先工效,再周期,先周期,再天数。 2. .天数:近似天数,准确天数。 3. 列表确定工作天数。 交替与周期:估算周期,注意顺序! 注水与周期:1.顺序,2.池中原来是否有水,3.注满或溢出。 五:工效变化。 六:比例:1.分比与连比,2.归一思想,3.正反比例的运用,4.假设法思想(周期)。 七:牛吃草问题:1.新生草量,2.原有草量,3.解决问题。 一、用“组合法”解工程问题专题简析:在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的
3、解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。例题1。 一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的,乙队单独完成全部工程需要几天【思路导航】此题已知甲、乙两队的工作效率和是,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量3,从而求出甲队的工作效率。所以 1【(3)(53)】20(天) 答:乙队单独完成全部工程需要20天。边讲边练:1
4、、 师、徒二人合做一批零件,12天可以完成。师傅先做了3天,因事外出,由徒弟接着做1天,共完成任务的。如果这批零件由师傅单独做,多少天可以完成2、 某项工程,甲、乙合做1天完成全部工程的。如果这项工程由甲队独做2天,再由乙队独做3天,能完成全部工程的。甲、乙两队单独完成这项工程各需多少天3、 甲、乙两队合做,20天可完成一项工程。先由甲队独做8天,再由乙队独做12天,还剩这项工程的。甲、乙两队独做各需几天完成例题2:一项工程,甲队独做12天可以完成。甲队先做了3天,再由乙队做2天,则能完成这项工程的。现在甲、乙两队合做若干天后,再由乙队单独做。做完后发现两段所用时间相等。求两段一共用了几天【思
5、路导航】此题很容易先求乙队的工作效率是:(3)2;再由条件“做完后发现两段所用时间相等”的题意,可组合成由两个乙队和一个甲队合做需若干天完成,即可求出相等的时间。(1) 乙队每天完成这项工程的 (3)2(2) 两段时间一共是 1(2+)26(天)答:两段时间一共是6天。边讲边练:1、 一项工程,甲队独做15天完成。若甲队先做5天,乙队再做4天能完成这项工程的。现由甲、乙两队合做若干天后,再由乙队单独做。做完后发现,两段时间相等。这两段时间一共是几天2、 一项工程,甲、乙合做8天完成。如果先让甲独做6天,再由乙独做,完成任务时发现乙比甲多了3天。乙独做这项工程要几天完成3、 某工作,甲单独做要1
6、2天,乙单独做要18天,丙单独做要24天。这件工作先由甲做了若干天,再由乙接着做;乙做的天数是甲3倍,再由丙接着做,丙做的天数是乙的2倍。终于完成了这一工作。问总共用了多少天例题3:移栽西红柿苗若干棵,如果哥、弟二人合栽8小时完成,先由哥哥栽了3小时后,又由弟弟栽了1小时,还剩总棵数的没有栽,已知哥哥每小时比弟弟每小时多栽7棵。共要移栽西红柿苗多少棵【思路导航】把“哥哥先栽了3小时,弟弟又栽了1小时”组合成“哥、的合栽了1小时后,哥哥又独做了2小时”,就可以求出哥哥每小时栽总数的几分之几。 哥哥每小时栽总数的几分之几 (11)(31) 一共要移栽的西红柿苗多少棵 7【()】112(棵) 答:共
7、要移栽西红柿苗112棵。边讲边练:1、 加工一批机器零件,师、徒合做12小时可以完成。先由师傅加工8小时,接着再由徒弟加工6小时,共加工了这批零件的。已知师傅每小时比徒弟多做10个零件。这批零件共有多少个2、 修一条公路,甲、乙两队合做6天可以完成。先由甲队修5天,再由乙队修3天,还剩这条公路的没有修。已知甲队每天比乙队多修20米。这条公路全长多少米3、 修一段公路,甲队独修要40天,乙队独修要用24天。两队同时从两端开工,结果在距中点750米处相遇。这段公路全长多少米例题4: 一项工作,甲、乙、丙3人合做6小时可以完成。如果甲工作6小时后,乙、丙合做2小时,可以完成这项工作的;如果甲、乙合做
8、3小时后,丙做6小时,也可以完成这项工作的。如果由甲、丙合做,需几小时完成【思路导航】将条件“甲工作6小时后,乙、丙合做2小时,可以完成这项工作的”组合成“甲工作4小时,甲、乙、丙合做2小时可以完成这项工作的”,则求出甲的工作效率。同理,运用“组合法”再求出丙的工作效率。 甲每小时完成这项工程的几分之几 (2)(62) 丙每小时完成这项工程的几分之几 (3)(63)甲、 丙合做需完成的时间为: 1(+)7(小时) 答:甲、丙合做完成需要7小时。边讲边练:1、 一项工作,甲、乙、丙三人合做,4小时可以完成。如果甲做4小时后,乙、丙合做2小时,可以完成这项工作的;如果甲、乙合做2小时后,丙再做4小
9、时,可以完成这项工作的。这项工作如果由甲、丙合做需几小时完成2、 一项工程,甲、乙合做6天可以完成,乙、丙合做10天可以完成。现在先由甲、乙、丙合做3天后,余下的乙再做6天则可以完成。乙独做这项工程要几天就可以完成3、 一项工程,甲、乙两队合做10天完成,乙、丙两队合做8天完成。现在甲、乙、丙三队合做4天后,余下的工程由乙队独做5天完成。乙队单独做这项工程需多少天可以完成4、 一件工作,甲、乙合做4小时完成,乙、丙合做5小时完成。现在由甲、丙合做2小时后,余下的由乙6小时完成。乙独做这件工作需几小时才能完成例题5:一条公路,甲队独修24天可以完成,乙队独修30天可以完成。先由甲、乙两队合修4天
10、,再由丙队参加一起修7天后全部完成。如果由甲、乙、丙三队同时开工修这条公路,几天可以完成【思路导航】将条件“先由甲、乙两队合修4天,再由丙队参加一起修7天后全部完成”组合成“甲、乙两队各修(4+7)11天后,再由丙队单独修了7天才全部完成。”就可以求出丙队的工作效率。 丙队每天修这条公路的 【1(+)】(4+7) 三队合修完成时间为 1(+)10(天) 答:10天可以完成。边讲边练:1、 一件工作,甲单独做12小时完成。现在甲、乙合做4小时后,乙又用6小时才完成。这件工作始终由甲、乙合做几小时可以完成2、 一条水渠,甲队独挖120天完成,乙队独挖40天完成。现在两队合挖8天,剩下的由丙队加入一
11、起挖,又用12天挖完。这条水渠由丙队单独挖,多少天可以完成3、 一件工作,甲、乙合做6天可以完成,乙、丙合做10天可以完成。如果甲、丙合做3天后,由乙单独做,还要9天才能完成。如果全部工作由3人合做,需几天可以完成4、 一项工程,甲、乙两队合做30天完成,甲队单独做24天后,乙队加入,两队又合做了12天。这时甲队调走,乙队又继续做了15天才完成。甲队独做这项工程需要多少天答案:练11、 1【()(31)】30天2、 乙:1【(2)(32)】8天甲:1()12天3、 乙:1【(18)(128)】60天甲:1()30天练21、 乙队的工作效率:(5)4总共的天数:1(+2)212天2、 1【(16
12、)3】12天3、 甲做的天数:1(+3+32)2天总共的天数:2+23+23220天练31、 师傅每小时做这批零件的(6)(86)这批零件共有10【()】600个2、 甲队每天修这条公路的(13)(53)这条公路全长多少米 20【()】600米3、 甲、乙两队工作效率的比是: :3:5这段公路的全长 750()6000米或 7502(53)(5+3)6000 米练41、甲队的工作效率(2)(42)丙队的工作效率(2)(42) 甲、丙合做需要的时间1(+)6小时2、 乙队每天能做全工程的【1(33)】(63) 乙队独做这项工程需要的时间115天3 乙队每天能做全工程的【1(44)】(54) 乙队
13、单独做这项工程需要的时间115天4、 乙队的工作效率【1(2+2)】(622)乙独做这件工作需要的时间120小时练5 1、乙每小时做这件工程的(14)(6+4)甲、乙合做完成需要的时间1(+)6小时2、 甲、乙两队完成的工作量(+)(8+2) 丙队单独挖需要的时间1【(1)12】36天3 乙的工作效率【1(3+3)】(933) 丙的工作效率 三人合做需要的时间1(+)5天4、 甲队的工作效率【1(12+15)】(2415)甲队单独做需要的时间190天二、特殊工程问题专题简析:有些工程题中,工作效率、工作时间和工作总量三者之间的数量关系很不明显,这时我们就可以考虑运用一些特殊的思路,如综合转化、
14、整体思考等方法来解题。例1:修一条路,甲队每天修8小时,5天完成;乙队每天修10小时,6天完成。两队合作,每天工作6小时,几天可以完成把前两个条件综合为“甲队40小时完成”,后两个条件综合为“乙队60小时完成”。则 1+6=4(天) 或1(+)6=4(天) 答:4天可以完成。边讲边练:1、 修一条路,甲队每天修6小时,4天可以完成;乙队每天修8小时,5天可以完成。现在让甲、乙两队合修,要求2天完成,每天应修几小时2、 一项工作,甲组3人8天能完成,乙组4人7天也能完成。现在由甲组2人和乙组7人合作,多少天可以完成3、 货场上有一堆沙子,如果用3辆卡车4天可以完成,用4辆马车5天可以运完,用20
15、辆小板车6天可以运完。现在用2辆卡车、3辆马车和7辆小板车共同运两天后,全改用小 板车运,必须在两天内运完。问:后两天需要多少辆小板车例2:有两个同样的仓库A和B,搬运一个仓库里的货物,甲需要10小时,乙需要12小时,丙需要15小时。甲和丙在A仓库,乙在B仓库,同时开始搬运。中途丙转向帮助乙搬运。最后,两个仓库同时搬完,丙帮助甲、乙各多少时间设搬运一个仓库的货物的工作量为“1”。总整体上看,相当于三人共同完成工作量“2” 三人同时搬运了 2(+)=8(小时) 丙帮甲搬了 (1-8)=3(小时) 丙帮乙搬了 8-3=5(小时) 答:丙帮甲搬了3小时,帮乙搬了5小时。边讲边练:1、 师、徒两人加工
16、相同数量的零件,师傅每小时加工自己任务的,徒弟每小时加工自己任务的。师、徒同时开始加工。师傅完成任务后立即帮助徒弟加工,直至完成任务,师傅帮徒弟加工了几小时2、 有两个同样的仓库A和B,搬运一个仓库里的货物,甲需要18小时,乙需要12小时,丙需要9小时。甲、乙在A仓库,丙在B仓库,同时开始搬运。中途甲又转向帮助丙搬运。最后,两个仓库同时搬完。甲帮助乙、丙各多少小时3、 甲、乙两人同时加工一批零件,完成任务时,甲做了全部零件的,乙每小时加工12个零件,甲单独加工这批零件要12小时,这批零件有多少个例3:一件工作,甲独做要20天完成,乙独做要12天完成。这件工作先由甲做了若干天,然后由乙继续做完,
17、从开始到完工共用了14天。这件工作由甲先做了几天解法一:根据两人做的工作量的和等于单位“1”列方程解答,很容易理解。 解:设甲做了x天,则乙做了(14-x)天。 x+(14-x)=1 X=5解法二:假设这14天都由乙来做,那么完成的工作量就是14,比总工作量多了14-1=,乙每天的能够做量比甲每天的工作两哦了-=,因此甲做了=5(天)练习3:1、 一项工程,甲独做12天完成,乙独做4天完成。若甲先做若干天后,由乙接着做余下的工程,直至完成全部任务,这样前后共用了6天,甲先做了几天2、 一项工程,甲队单独做需30天完成,乙队单独做需40天完成。甲队单独做若干天后,由乙队接着做,共用35天完成了任
18、务。甲、乙两队各做了多少天3、 一项工程,甲独做要50天,乙独做要75天,现在由甲、乙合作,中间乙休息几天,这样共用40天完成。求乙休息的天数。例4:甲、乙两人合作加工一批零件,8天可以完成。中途甲因事停工3天,因此,两人共用了10天才完成。如果由甲单独加工这批零件,需要多少天才能完成解法一:先求出乙的工作效率,再求出甲的工作效率。最后求出甲单独做需要的天数。 甲、乙同时做的工作量为(10-3) 乙单独做的工作量为1 乙的工作效率为3= 甲的工作效率为 甲单独做需要的天数为112(天)解法二:从题中得知,由于甲停工3天,致使甲、乙两人多做了(10-8=)2天。由此可知,甲3天的工作量相当于这批
19、零件的28=1/4 3(10-8)8=12(天)或 38(10-8)=12(天) 答:甲单独做需要12天完成。练习4:1、 甲、乙两人合作某项工程需要12天。在合作中,甲因输请假5天,因此共用15天才完工。如果全部工程由甲单独去干,需要多少天才能完成2、 一段布,可以做30件上衣,也可做48条裤子。如果先做20件上衣后,还可以做多少条裤子3、 一项工程,甲、乙合作6小时可以完成,同时开工,中途甲通工了2.5小时,因此,经过7.5小时才完工。如果这项工程由甲单独做需要多少小时4、 一项工程,甲先单独做2天,然后与乙合作7天,这样才完成全工程的一半,已知甲、乙工作效率的比是3:2,如果这件工作由乙
20、单独做,需要多少天才能完成例5:放满一个水池的水,如果同时开放号阀门,15小时放满;如果同时开放号阀门,12小时可以放满;如果同时开放号阀门,8小时可以放满。问:同时开放这五个阀门几小时可以放满这个水池从整体入手,比较条件中各个阀门出现的次数可知,号阀门各出现3次,号阀门各出现2次。如果+再加一个,则是五个阀门各放3小时的总水量。 1(+)3=13=6(小时)边讲边练:1、 完成一件工作,甲、乙合作需15小时,乙、丙两人合作需12小时,甲、丙合作需10小时。甲、乙丙三人合作需几小时才能完成2、 一项工程,甲干3天,乙干5天可以完成,甲干5天、乙干3天可完成。甲、乙合干需几天完成3、 完成一件工
展开阅读全文