小学数学工程问题及答案汇编(DOC 11页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《小学数学工程问题及答案汇编(DOC 11页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学数学工程问题及答案汇编DOC 11页 小学 数学 工程 问题 答案 汇编 DOC 11 下载 _其他_数学_小学
- 资源描述:
-
1、学习-好资料工程问题工程问题基本数量关系式:(1)一般公式:工作效率工作时间工作总量 工作总量工作效率工作时间工作总量 工作时间工作效率(2)用假设工作总量为“1”的方法解工程问题的公式:1工作时间=单位时间内完成工作总量的几分之几;一般给出工作时间,就可以知道工作效率为,1单位时间能完成的几分之几=工作时间。如果可以给出工作效率是,就可以知道工作时间为a.一、两个人的问题 标题上说的“两个人”,也可以是两个组、两个队等等的两个集体. 例1一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作? . 例2 一件工作,甲、乙两人合作3
2、0天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天? . 例3 某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天? . 例4 一件工程,甲队单独做10天完成,乙队单独做30天完成.现在两队合作,其间甲队休息了2天,乙队休息了8天(不存在两队同一天休息).问开始到完工共用了多少天时间? 例5 一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息
3、了多少天? 例6 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要 8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天? . 例7 一项工程,甲独做需10天,乙独做需15天,如果两人合作,他 要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天? 例8 甲、乙合作一件工作,由于配合得好,甲的工作效率比单独做时快如果这件工作始终由甲一人单独来做,需要多少小时? 二、多人的工程问题 我们说的多人,至少有3个人,当然多人问题要比2人问题复杂一些,但是解题的基本思路还是差不多. 例9 一件工作,甲、乙两人合作3
4、6天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成? 例10 一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天? 例11 一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天.问这项工程由甲独做需要多少天? 例12 某项工作,甲组3人8天能完成工作,乙组4人7天也能完成工作.问甲组2人和乙组7人合作多少时间能完成这项工作? 例13 制作一批零件,甲
5、车间要10天完成,如果甲车间与乙车间一起做只要6天就能完成.乙车间与丙车间一起做,需要8天才能完成.现在三个车间一起做,完成后发现甲车间比乙车间多制作零件2400个.问丙车间制作了多少个零件? . 例14 搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间? 三、 水管问题 从数学的内容来看,水管问题与工程问题是一样的.水池的注水或排水相当于一项工程,注水量或排水量就是工作量.单位时间里的注水量或排水量就是工作效率.至于又有注入
6、又有排出的问题,不过是工作量有加有减罢了.因此,水管问题与工程问题的解题思路基本相同. 例15 甲、乙两管同时打开,9分钟能注满水池.现在,先打开甲管,10分钟后打开乙管,经过3分钟就注满了水池.已知甲管比乙管每分钟多注入0.6立方米水,这个水池的容积是多少立方米? 例16 有一些水管,它们每分钟注水量都相等.现在打开其中若干根水管,经过预定的时间的1/3,再把打开的水管增加一倍,就能按预定时间注满水池,如果开始时就打开10根水管,中途不增开水管,也能按预定时间注满水池.问开始时打开了几根水管?例17 蓄水池有甲、丙两条进水管,和乙、丁两条排水管.要灌满一池水,单开甲管需3小时,单开丙管需要5
7、小时.要排光一池水,单开乙管需要 4小,丁管需要6小时,现在水池内有六分之一的水,如按甲、乙、丙、丁、甲、乙的顺序轮流打开1小时,问多少时间后水开始溢出水池? 例18 一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空? 例19 一个水池,地下水从四壁渗入池中,每小时渗入水量是固定的.打开A管,8小时可将满池水排空,打开C管,12小时可将满池水排空.如果打开A,B两管,4小时可将水排空.问打开B,C两管,要几小时才能将满池水排空? . 例20 有三片牧场,场上草长得一样密,而且
8、长得一 草;21头牛9星期吃完第二片牧场的草.问多少头牛18星期才能吃完第三片牧场的草? “牛吃草”这一类型问题可以以各种各样的面目出现.限于篇幅,我们只再举一个例子. 例21 画展9点开门,但早有人排队等候入场.从第一个观众来到时起,每分钟来的观众人数一样多.如果开3个入场口,9点9分就不再有人排队,如果开5个入场口,9点5分就没有人排队.问第一个观众到达时间是8点几分? 例22.一件工作,如果甲单独做,那么甲按规定时间可提前2天完成,乙则要超过规定时间3天才完成。现在甲乙二人合作二天后,剩下的乙单独做,刚好在规定日期内完成。若甲乙二人合作,完成工作需多长时间? 例1答:乙需要做4天可完成全
9、部工作. 解二:9与6的最小公倍数是18.设全部工作量是18份.甲每天完成2份,乙每天完成3份.乙完成余下工作所需时间是 (18- 2 3) 3= 4(天). 解三:甲与乙的工作效率之比是 6 9= 2 3. 甲做了3天,相当于乙做了2天.乙完成余下工作所需时间是6-2=4(天)例2解:共做了6天后, 原来,甲做 24天,乙做 24天, 现在,甲做0天,乙做40=(24+16)天. 这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作效率 如果乙独做,所需时间是 如果甲独做,所需时间是 答:甲或乙独做所需时间分别是75天和50天例3解:先对比如下: 甲做63天,乙做28天; 甲做48
10、天,乙做48天. 就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出甲的 甲先单独做42天,比63天少做了63-42=21(天),相当于乙要做 因此,乙还要做 28+28= 56 (天). 答:乙还需要做 56天二、资料网址:例4解一:甲队单独做8天,乙队单独做2天,共完成工作量 余下的工作量是两队共同合作的,需要的天数是 2+8+ 1= 11(天). 答:从开始到完工共用了11天. 解二:设全部工作量为30份.甲每天完成3份,乙每天完成1份.在甲队单独做8天,乙队单独做2天之后,还需两队合作 (30- 3 8- 1 2)(3+1)= 1(天). 解三:甲队做1天相当
11、于乙队做3天. 在甲队单独做 8天后,还余下(甲队) 10-8= 2(天)工作量.相当于乙队要做23=6(天).乙队单独做2天后,还余下(乙队)6-2=4(天)工作量. 4=3+1, 其中3天可由甲队1天完成,因此两队只需再合作1天.营销调研课题 例5解一:如果16天两队都不休息,可以完成的工作量是 由于两队休息期间未做的工作量是 乙队休息期间未做的工作量是 乙队休息的天数是 答:乙队休息了5天半. 解二:设全部工作量为60份.甲每天完成3份,乙每天完成2份. 两队休息期间未做的工作量是 (3+2)16- 60= 20(份). 因此乙休息天数是 (20- 3 3) 2= 5.5(天). 解三:
12、甲队做2天,相当于乙队做3天. 甲队休息3天,相当于乙队休息4.5天. 如果甲队16天都不休息,只余下甲队4天工作量,相当于乙队6天工作量,乙休息天数是 16-6-4.5=5.5(天). 例6解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高.因此让李先做甲,张先做乙. 设乙的工作量为60份(15与20的最小公倍数),张每天完成4份,李每天完成3份. 8天,李就能完成甲工作.此时张还余下乙工作(60-48)份.由张、李合作需要 (60-48)(4+3)=4(天). 8+4=12(天). 答:这两项工作都完成最少需要12天解:设这项工程的工作量为30份,甲每天完成3份,乙每天完成2份.
展开阅读全文