分式培优训练(含答案)(DOC 9页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《分式培优训练(含答案)(DOC 9页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分式培优训练含答案DOC 9页 分式 训练 答案 DOC
- 资源描述:
-
1、13、分式总复习【知识精要】 【分类解析】1. 分式有意义的应用 例1. 若,试判断是否有意义。 分析:要判断是否有意义,须看其分母是否为零,由条件中等式左边因式分解,即可判断与零的关系。 解: 即 或 中至少有一个无意义。 2. 结合换元法、配方法、拆项法、因式分解等方法简化分式运算。 例2. 计算: 分析:如果先通分,分子运算量较大,观察分子中含分母的项与分母的关系,可采取“分离分式法”简化计算。 解:原式 例3. 解方程: 分析:因为,所以最简公分母为:,若采用去分母的通常方法,运算量较大。由于故可得如下解法。 解: 原方程变为 经检验,是原方程的根。 3. 在代数求值中的应用 例4.
2、已知与互为相反数,求代数式的值。 分析:要求代数式的值,则需通过已知条件求出a、b的值,又因为,利用非负数及相反数的性质可求出a、b的值。 解:由已知得,解得 原式 把代入得:原式 4. 用方程解决实际问题 例5. 一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度。 解:设这列火车的速度为x千米/时 根据题意,得 方程两边都乘以12x,得 解得 经检验,是原方程的根 答:这列火车原来的速度为75千米/时。 5. 在数学、物理、化学等学科的学习中,都会遇到有关公式的推导,公式的变形等问题。而
3、公式的变形实质上就是解含有字母系数的方程。 例6. 已知,试用含x的代数式表示y,并证明。 解:由,得 6、中考原题: 例1已知,则M_。 分析:通过分式加减运算等式左边和右边的分母相同,则其分子也必然相同,即可求出M。 解: 例2已知,那么代数式的值是_。 分析:先化简所求分式,发现把看成整体代入即可求的结果。 解:原式 例3(2013重庆B卷21)先化简,再求值:,其中x是不等式3x+71的负整数解考点:分式的化简求值;一元一次不等式的整数解分析:首先把分式进行化简,再解出不等式,确定出x的值,然后再代入化简后的分式即可解答:解:原式=,=,=,3x+71,3x6,x2,x是不等式3x+7
4、1的负整数解,x=1,把x=1代入中得:=3点评:此题主要考查了分式的化简求值,以及不等式的整数解,关键是正确把分式进行化简例4(2014重庆A卷21)先化简,再求值:()+,其中x的值为方程2x=5x1的解考点:分式的化简求值;解一元一次方程专题:计算题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后两项通分并利用同分母分式的加法法则计算得到最简结果,求出方程的解得到x的值,代入计算即可求出值解答:解:原式=+=+=+=,解方程2x=5x1,得:x=,当x=时,原式=点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键7、题型展示: 例1. 当x
展开阅读全文