书签 分享 收藏 举报 版权申诉 / 8
上传文档赚钱

类型(完整版)待定系数法分解因式(附答案).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5868706
  • 上传时间:2023-05-12
  • 格式:DOC
  • 页数:8
  • 大小:196KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(完整版)待定系数法分解因式(附答案).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    完整版 待定系数法 分解 因式 答案
    资源描述:

    1、待定系数法分解因式(附答案)待定系数法作为最常用的解题方法,可以运用于因式分解、确定方程系数、解决应用问题等各种场合。其指导作用贯穿于初中、高中甚至于大学的许多课程之中,认真学好并掌握待定系数法,必将大有裨益。内容综述将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。然后根据恒等式的性质得出系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。本讲主要介绍待定系数法在因式分解中的作用。同学们要仔细体会解题的技巧。要点解析这一部分中,通过一系列题目的因式分解过程,同学们要学会用待定系数法进行因式分解

    2、时的方法,步骤,技巧等。例1 分解因式 思路1 因为 所以设原式的分解式是然后展开,利用多项式的恒等,求出m, n,的值。 解法1因为所以可设 比较系数,得由、解得把代入式也成立。思路2 前面同思路1,然后给x,y取特殊值,求出m,n 的值。解法2 因为所以可设因为该式是恒等式,所以它对所有使式子有意义的x,y都成立,那么无妨令得令得解、得或把它们分别代入恒等式检验,得说明:本题解法中方程的个数多于未知数的个数,必须把求得的值代入多余的方程逐一检验。若有的解对某个方程或所设的等式不成立,则需将此解舍去;若得方程组无解,则说明原式不能分解成所设形成的因式。例2 分解因式思路 本题是关于x的四次多

    3、项式,可考虑用待定系数法将其分解为两个二次式之积。解 设 由恒等式性质有:由、解得代入中,式成立。说明 若设原式由待定系数法解题知关于a与b的方程组无解,故设原式例3 在关于x的二次三项式中,当时,其值为0;当时,其值为0;当时,其值为10,求这个二次三项式。思路1 先设出关于x的二次三项式的表达式,然后利用已知条件求出各项的系数。可考虑利用恒待式的性质。解法1 设关于x的二次三项式为把已知条件分别代入,得解得故所求的二次三项为思路2 根据已知时,其值0这一条件可设二次三项式为然后再求出a的值。解法2 由已知条件知当时,这个二次三项式的值都为0,故可设这个二次三项式为把代入上式,得 解得故所求

    4、的二次三项式为即说明要注意利用已知条件,巧设二次三项式的表达式。例4 已知多项式的系数都是整数。若是奇数,证明这个多项式不能分解为两个整系数多项式的乘积。思路先设这个多项式能分解为两个整系数多项式的乘积,然后利用已知条件及其他知识推出这种分解是不可能的。证明:设 (m,n,r都是整数)。比较系数,得因为是奇数,则与d都为奇数,那么mr也是奇数,由奇数的性质得出m,r也都是奇数。在式中令,得由是奇数,得是奇数。而m为奇数,故是偶数,所以是偶数。这样的左边是奇数,右边是偶数。这是不可能的。因此,题中的多项式不能分解为两个整系数多项式的乘积。说明:所要证的命题涉及到“不能”时,常常考虑用反证法来证明

    5、。 例5 已知能被整除,求证: 思路:可用待定系数法来求展开前后系数之间的关系。证明:设展开,比较系数,得由、,得,代入、得:,例6若a是自然数,且的值是一个质数,求这个质数。思路:因为质数只能分解为1和它本身,故可用待定系数法将多项式分解因式,且使得因式中值较小的为1,即可求a的值。进而解决问题。解:由待定系数法可解得由于a是自然数,且 是一个质数,解得当时,不是质数。当 时,是质数。=11 .培优训练A级1、分解因式_.2、若多项式能被 整除,则n=_.3、二次三项式当 时其值为-3,当 时其值为2,当 时其值为5 ,这个二次三项式是_.4、m, n是什么数时,多项式能被整除?B级5、多项

    6、式 能分解为两个一次因式的积,则k=_.6、若多项式 能被整除,则_.7、若多项式当2 时的值均为0,则当x=_时,多项式的值也是0。8、求证:不能分解为两个一次因式的积。参考答案或提示:1.提示:设原式比较两边系数,得由、解得将 代入式成立。原式2、-4。提示:设原式=比较系数,得由、解得代入得3、提示:设二次三项式为把已知条件代入,得解得所求二次三项式为4. 设比较系数,得 解得当m=-11,n=4已知多项式能被整除。5.-2提示:设原式.比较系数,得 解得 6.-7提示:设原式比较系数,得解得7.3.提示:设原式比较系数,得解得c=3. 当x=3时,多项式的值也是0.8.设原式且展开后比较系数,得由、得代入,再由、得将上述入得.而这与矛盾,即方程组无解。故命题得证。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(完整版)待定系数法分解因式(附答案).doc
    链接地址:https://www.163wenku.com/p-5868706.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库