(完整版)有理数提高题(有答案).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)有理数提高题(有答案).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 有理数 提高 答案
- 资源描述:
-
1、有理数基础训练题一、填空:1、在数轴上表示2的点到原点的距离等于( )。2、若a=a,则a( )0.3、任何有理数的绝对值都是( )。4、如果a+b=0,那么a、b一定是( )。5、将0.1毫米的厚度的纸对折20次,列式表示厚度是( )。6、已知,则( )7、的最小值是( )。8、在数轴上,点A、B分别表示,则线段AB的中点所表示的数是( )。9、若互为相反数,互为倒数,P的绝对值为3,则( )。10、若abc0,则的值是( ) .11、下列有规律排列的一列数:1、,其中从左到右第100个数是( )。二、解答问题:1、已知x+3=0,|y+5|+4的值是4,z对应的点到-2对应的点的距离是7,
2、求x 、y、 z这三个数两两之积的和。3、若的值恒为常数,求满足的条件及此时常数的值。4、若为整数,且,试求的值。5、计算: 能力培训题知识点一:数轴例1:已知有理数在数轴上原点的右方,有理数在原点的左方,那么( )A B C D拓广训练:1、如图为数轴上的两点表示的有理数,在中,负数的个数有( )A1 B2 C3 D43、把满足中的整数表示在数轴上,并用不等号连接。2、利用数轴能直观地解释相反数;例2:如果数轴上点A到原点的距离为3,点B到原点的距离为5,那么A、B两点的距离为 。拓广训练:1、在数轴上表示数的点到原点的距离为3,则2、已知数轴上有A、B两点,A、B之间的距离为1,点A与原点
3、O的距离为3,那么所有满足条件的点B与原点O的距离之和等于 。3、利用数轴比较有理数的大小;例3:已知且,那么有理数的大小关系是 。(用“”号连接)拓广训练:1、 若且,比较的大小,并用“”号连接。例4:已知比较与4的大小 拓广训练:1、已知,试讨论与3的大小 2、已知两数,如果比大,试判断与的大小4、利用数轴解决与绝对值相关的问题。例5: 有理数在数轴上的位置如图所示,式子化简结果为( )A B C D拓广训练:1、有理数在数轴上的位置如图所示,则化简的结果为 。2、已知,在数轴上给出关于的四种情况如图所示,则成立的是 。 3、已知有理数在数轴上的对应的位置如下图:则化简后的结果是( )A
4、B C D三、培优训练1、已知是有理数,且,那以的值是( )A B C或 D或10A2B5C2、如图,数轴上一动点向左移动2个单位长度到达点,再向右移动5个单位长度到达点若点表示的数为1,则点表示的数为()3、如图,数轴上标出若干个点,每相邻两点相距1个单位,点A、B、C、D对应的数分别是整数且,那么数轴的原点应是( )AA点 BB点 CC点 DD点4、数所对应的点A,B,C,D在数轴上的位置如图所示,那么与的大小关系是( )A B C D不确定的5、不相等的有理数在数轴上对应点分别为A,B,C,若,那么点B( )A在A、C点右边 B在A、C点左边 C在A、C点之间 D以上均有可能6、设,则下
5、面四个结论中正确的是( )A没有最小值 B只一个使取最小值C有限个(不止一个)使取最小值 D有无穷多个使取最小值7、在数轴上,点A,B分别表示和,则线段AB的中点所表示的数是 。8、若,则使成立的的取值范围是 。9、是有理数,则的最小值是 。10、已知为有理数,在数轴上的位置如图所示:且求的值。11、(南京市中考题)(1)阅读下面材料:点A、B在数轴上分别表示实数,A、B两点这间的距离表示为,当A、B两点中有一点在原点时,不妨设点A在原点,如图1,;当A、B两点都不在原点时,如图2,点A、B都在原点的右边;如图3,点A、B都在原点的左边;如图4,点A、B在原点的两边。综上,数轴上A、B两点之间
6、的距离。(2)回答下列问题:数轴上表示2和5两点之间的距离是 ,数轴上表示-2和-5的两点之间的距离是 ,数轴上表示1和-3的两点之间的距离是 ;数轴上表示和-1的两点A和B之间的距离是 ,如果,那么为 ;当代数式取最小值时,相应的的取值范围是 ;求的最小值。聚焦绝对值一、阅读与思考绝对值是初中代数中的一个重要概念,引入绝对值概念之后,对有理数、相反数以及后续要学习的算术根可以有进一步的理解;绝对值又是初中代数中一个基本概念,在求代数式的值、代数式的化简、解方程与解不等式时,常常遇到含有绝对值符号的问题,理解、掌握绝对值概念应注意以下几个方面:1、脱去绝值符号是解绝对值问题的切入点。脱去绝对值
7、符号常用到相关法则、分类讨论、数形结合等知识方法。去绝对值符号法则:2、恰当地运用绝对值的几何意义从数轴上看表示数的点到原点的距离;表示数、数的两点间的距离。3、灵活运用绝对值的基本性质 二、知识点反馈1、去绝对值符号法则例1:已知且那么 。拓广训练:1、已知且,那么 。2、若,且,那么的值是( )A3或13 B13或-13 C3或-3 D-3或-13拓广训练:1、 已知的最小值是,的最大值为,求的值。三、培优训练1、如图,有理数在数轴上的位置如图所示:则在中,负数共有( )A3个 B1个 C4个 D2个2、若是有理数,则一定是( )A零 B非负数 C正数 D负数3、如果,那么的取值范围是(
8、)A B C D4、是有理数,如果,那么对于结论(1)一定不是负数;(2)可能是负数,其中( )A只有(1)正确 B只有(2)正确 C(1)(2)都正确 D(1)(2)都不正确5、已知,则化简所得的结果为( )A B C D6、已知,那么的最大值等于( )A1 B5 C8 D98、满足成立的条件是( )A B C D9、若,则代数式的值为 。10、若,则的值等于 。11、已知是非零有理数,且,求的值。13、阅读下列材料并解决有关问题:我们知道,现在我们可以用这一个结论来化简含有绝对值的代数式,如化简代数式时,可令和,分别求得(称分别为与的零点值)。在有理数范围内,零点值和可将全体有理数分成不重
展开阅读全文