空间坐标系与空间坐标系在立体几何中有答案(DOC 14页).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《空间坐标系与空间坐标系在立体几何中有答案(DOC 14页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间坐标系与空间坐标系在立体几何中有答案DOC 14页 空间 坐标系 立体几何 答案 DOC 14
- 资源描述:
-
1、一空间直角坐标系如图1,为了确定空间点的位置,我们建立空间直角坐标系:以正方体为载体,以O为原点,分别以射线OA,OC,OD的方向为正方向,以线段OA,OC,OD的长为单位长,建立三条数轴:x轴、y轴、z轴,这时我们说建立了一个 空间直角坐标系 ,其中点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、zOx平面、yOz平面,通常建立的坐标系为 右手直角坐标系 ,即 右手拇指 指向x轴的正方向, 食指 指向y轴的正方向, 中指指向z轴的正方向二空间直角坐标系中的坐标空间一点M的坐标可用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做
2、点M在此空间直角坐标系中的坐标,记作 M(x,y,z),其中x叫做点M的 横坐标 ,y叫做点M的 纵坐标 ,z叫做点M的 竖坐标 例1在空间直角坐标系中,作出点M(6,2,4)例2长方体ABCDA1B1C1D1中,|AB|a,|BC|b,|CC1|c,将此长方体放到空间直角坐标系中的不同位置(如图3),分别写出长方体各顶点的坐标变式1:棱长为2的正方体,将此正方体放到空间直角坐标系中的不同位置,分别写出几何体各顶点的坐标。2.底面为边长为4的菱形,高为5的棱柱,将此几何体放到空间直角坐标系中的不同位置分别写出几何体各顶点的坐标。3. 在棱长均为2a的正四棱锥PABCD中,建立恰当的空间直角坐标
3、系,(1)写出正四棱锥PABCD各顶点坐标;(2)写出棱PB的中点M的坐标解:连接AC,BD交于点O,连接PO,PABCD为正四棱锥,且棱长均为2a.四边形ABCD为正方形,且PO平面ABCD.OAa.POa.以O点为坐标原点,OA,OB,OP所在的直线分别为x轴、y轴、z轴,建立空间直角坐标系(1)正四棱锥PABCD中各顶点坐标分别为A(a,0,0),B(0,a,0),C(a,0,0),D(0,a,0),P(0,0,a)(2)M为棱PB的中点,由中点坐标公式,得M(,),即M(0,a,a) 例3在空间直角坐标系中,点P(2,1,4)(1)求点P关于x轴的对称点的坐标;(2)求点P关于xOy平
4、面的对称点的坐标;(3)求点P关于点M(2,1,4)的对称点的坐标解(1)由于点P关于x轴对称后,它在x轴的分量不变,在y轴、z轴的分量变为原来的相反数,所以对称点为P1(2,1,4)(2)由于点P关于xOy平面对称后,它在x轴、y轴的分量不变,在z轴的分量变为原来的相反数,所以对称点为P2(2,1,4)(3)设对称点为P3(x,y,z),则点M为线段PP3的中点,由中点坐标公式,可得x22(2)6,y2(1)13,z2(4)412,所以P3(6,3,12)变式:1.写出点P(6,2,7)在xOy面,yOz面,xOz面上的投影的坐标以及点P关于各坐标平面对称的点的坐标解:设点P在xOy平面、y
5、Oz平面、xOz平面上的投影分别为点A,B,C,点P关于xOy平面、yOz平面、xOz平面的对称点分别为点A,B,C,由PA平面xOy,PB平面yOz,PC平面xOz及坐标平面的特征知,点A(6,2,0),点B(0,2,7),点C(6,0,7);根据点P关于各坐标平面对称点的特征知,点A(6,2,7),B(6,2,7),C(6,2,7)2.在棱长都为2的正三棱柱ABCA1B1C1中,建立恰当的直角坐标系,并写出正三棱柱ABCA1B1C1各顶点的坐标正解取BC,B1C1的中点分别为O,O1,连线OA,OO1,根据正三棱柱的几何性质,OA,OB,OO1两两互相垂直,且|OA|2,以OA,OB,OO
6、1所在的直线分别为x轴、y轴、z轴建立直角坐标系,如图5所示,则正三棱柱ABCA1B1C1各顶点的坐标分别为A(,0,0),B(0,1,0),C(0,1,0),A1(,0,2),B1(0,1,2),C1(0,1,2)三空间向量在立体几何中的应用1. 直线的方向向量与平面的法向量(1) 直线l上的向量e以及与e共线的向量叫做直线l的方向向量(2) 如果表示非零向量n的有向线段所在直线垂直于平面,那么称向量n垂直于平面,记作n.此时把向量n叫做平面的法向量2. 线面关系的判定直线l1的方向向量为e1(a1,b1,c1),直线l2的方向向量为e2(a2,b2,c2),平面的法向量为n1(x1,y1,
7、z1),平面的法向量为n2(x2,y2,z2)(1) 如果l1l2,那么e1e2e2e1a2a1,b2b1,c2c1(2) 如果l1l2,那么e1e2e1e20a1a2b1b2c1c20(3) 若l1,则e1n1e1n10a1x1b1y1c1z10(4) 若l1,则e1n1e1kn1a1kx1,b1ky1,c1kz1(5) 若,则n1n2n1kn2x1kx2,y1ky2,z1kz2(6) 若,则n1n2n1n20x1x2y1y2z1z203. 利用空间向量求空间角(1) 两条异面直线所成的角范围:两条异面直线所成的角的取值范围是.向量求法:设直线a、b的方向向量为a、b,其夹角为,则有cos|
8、cos|.(2) 直线与平面所成的角范围:直线和平面所成的角的取值范围是.向量求法:设直线l的方向向量为a,平面的法向量为u,直线与平面所成的角为,a与u的夹角为,则有sin|cos|(3) 二面角二面角的取值范围是0,二面角的向量求法:() 若AB、CD分别是二面角-l-的两个面内与棱l垂直的异面直线,则二面角的大小就是向量AB与CD的夹角(如图)() 设n1、n2分别是二面角-l-的两个面、的法向量,则向量n1与n2的夹角(或其补角)的大小就是二面角的平面角的大小(如图)题型1空间向量的基本运算 例1已知空间三点A(2,0,2),B(1,1,2),C(3,0,4)设a,b.(1) 求a和b
9、的夹角;(2)若向量kab与ka2b互相垂直,求k的值解:A(2,0,2),B(1,1,2),C(3,0,4),a,b,a(1,1,0),b(1,0,2)(1)cos,a和b的夹角为arccos.(2)kabk(1,1,0)(1,0,2)(k1,k,2),ka2b(k2,k,4),且(kab)(ka2b),(k1,k,2)(k2,k,4)(k1)(k2)k282k2k100,解得k或2.题型2空间中的平行与垂直例2如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB,AF1,M是线段EF的中点求证:(1) AM平面BDE;(2) AM平面BDF.证明:(1) 建立如图所示的空间直
10、角坐标系,设ACBDN,连结NE.则N,E(0,0,1),A(,0),M. ,. 且NE与AM不共线 NEAM. NE平面BDE,AM平面BDE, AM平面BDE.(2) 由(1)知, D(,0,0),F(,1), (0,1), 0, AMDF.同理AMBF. 又DFBFF, AM平面BDF.题型3空间的角的计算例3(2013苏锡常镇二模)如图,圆锥的高PO4,底面半径OB2,D为PO的中点,E为母线PB的中点,F为底面圆周上一点,满足EFDE.(1) 求异面直线EF与BD所成角的余弦值;(2) 求二面角F-OD-E的正弦值解:(1) 以O为原点,底面上过O点且垂直于OB的直线为x轴,OB所在
11、的线为y轴,OP所在的线为z轴,建立空间直角坐标系,则B(0,2,0),P(0,0,4),D(0,0,2),E(0,1,2)设F(x0,y0,0)(x00,y00),且xy4,则(x0,y01,2),(0,1,0), EFDE,即,则y010,故y01. F(,1,0),(,0,2),(0,2,2)设异面直线EF与BD所成角为,则cos.(2) 设平面ODF的法向量为n1(x1,y1,z1),则即令x11,得y1,平面ODF的一个法向量为n1(1,0)设平面DEF的法向量为n2(x2,y2,z2),同理可得平面DEF的一个法向量为n2.设二面角F-OD-E的平面角为,则|cos|. sin.(
12、翻折问题)例4. (2013广东韶关第二次调研)如图甲,在平面四边形ABCD中,已知A45,C90,ADC105,ABBD,现将四边形ABCD沿BD折起,使平面ABD平面BDC(如图乙),设点E、F分别为棱AC、AD的中点(1) 求证: DC平面ABC; (2) 求BF与平面ABC所成角的正弦值;(3) 求二面角BEFA的余弦值解:(1) 平面ABD平面BDC,又 ABBD, AB平面BDC,故ABDC,又 C90, DCBC,BCABC平面ABC,DC平面ABC,故DC平面ABC.(2) 如图,以B为坐标原点,BD所在的直线为x轴建立空间直角坐标系如下图示, 设CDa,则BDAB2a,BCa
13、,AD2a,可得B(0,0,0),D(2a,0,0),A(0,0,2a),C,F(a,0,a), ,(a,0,a)设BF与平面ABC所成的角为,由(1)知DC平面ABC, cos, sin.(3) 由(2)知 FE平面ABC, 又 BE平面ABC,AE平面ABC, FEBE,FEAE, AEB为二面角BEFA的平面角 .在AEB中,AEBEACa, cosAEB,即所求二面角BEFA的余弦为.课后巩固练习:1.(2013江苏卷)如图所示,在直三棱柱A1B1C1ABC中,ABAC,ABAC2,A1A4,点D是BC的中点(1) 求异面直线A1B与C1D所成角的余弦值;(2) 求平面ADC1与平面A
14、BA1所成二面角的正弦值解:(1) 以A为坐标原点,建立如图所示的空间直角坐标系Axyz,则A(0,0,0),B(2,0,0),C(0,2,0),D(1,1,0),A1(0,0,4),C1(0,2,4),所以(2,0,4),(1,1,4)因为cos,所以异面直线A1B与C1D所成角的余弦值为.(2) 设平面ADC1的法向量为n1(x,y,z),因为(1,1,0),(0,2,4),所以n10,n10,即xy0且y2z0,取z1,得x2,y2,所以,n1(2,2,1)是平面ADC1的一个法向量取平面AA1B的一个法向量为n2(0,1,0),设平面ADC1与平面ABA1所成二面角的大小为.由|cos
展开阅读全文