书签 分享 收藏 举报 版权申诉 / 34
上传文档赚钱

类型解直角三角形应用专题带答案-(DOC 30页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5867937
  • 上传时间:2023-05-12
  • 格式:DOC
  • 页数:34
  • 大小:533KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《解直角三角形应用专题带答案-(DOC 30页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    解直角三角形应用专题带答案-DOC 30页 直角三角形 应用 专题 答案 DOC 30
    资源描述:

    1、 解直角三角形应用专题练习一解答题(共21小题)1在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度用测角仪在A处测得雕塑顶端点C的仰角为30,再往雕塑方向前进4米至B处,测得仰角为45问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值)2如图,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔C的南偏东30方向上的B处,求此时船距灯塔的距离(参考数据:1.414,1.732,结果取整数)32018年4月12日,菏泽国际牡丹花会拉开帷幕,菏泽电视台用直升机航拍技术全程直播如图,在直升机的镜头下,观测曹州牡丹园A处的俯角为

    2、30,B处的俯角为45,如果此时直升机镜头C处的高度CD为200米,点A、B、D在同一条直线上,则A、B两点间的距离为多少米?(结果保留根号)4小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮通过操控器指令无人机测得桥头B,C的俯角分别为EAB=60,EAC=30,且D,B,C在同一水平线上已知桥BC=30米,求无人机飞行的高度AD(精确到0.01米参考数据:1.414,1.732)5我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由B处望山脚A处的俯角为30,由B处望山脚C处的俯角

    3、为45,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据1.732)6随着航母编队的成立,我国海军日益强大2018年4月12日,中央军委在南海海域隆重举行海上阅兵,在阅兵之前我军加强了海上巡逻,如图,我军巡逻舰在某海域航行到A处时,该舰在观测点P的南偏东45的方向上,且与观测点P的距离PA为400海里;巡逻舰继续沿正北方向航行一段时间后,到达位于观测点P的北偏东30方向上的B处,问此时巡逻舰与观测点P的距离PB为多少海里?(参考数据:1.414,1.732,结果精确到1海里)7由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务如图,航母由西

    4、向东航行,到达A处时,测得小岛C位于它的北偏东70方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37方向如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长(参考数据:sin700.94,cos700.34,tan702.75,sin370.6,cos370.80,tan370.75)8如图,某市郊外景区内一条笔直的公路l经过A、B两个景点,景区管委会又开发了风景优美的景点C经测量,C位于A的北偏东60的方向上,C位于B的北偏东30的方向上,且AB=10km(1)求景点B与C的距离;(2)为了方便游客到景点C游玩,景区管委会准备由景点C向公路l修一

    5、条距离最短的公路,不考虑其他因素,求出这条最短公路的长(结果保留根号)9为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45的方向上,如图所示求凉亭P到公路l的距离(结果保留整数,参考数据:1.414,1.732)10如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48,测得底部C处的俯角为58,求甲、乙建筑物的高度AB和DC(结果取整数)参考数据:tan48lll,tan581.6011小婷在放学路上,看到隧道上方有一块宣

    6、传“中国南亚博览会”的竖直标语牌CD她在A点测得标语牌顶端D处的仰角为42,测得隧道底端B处的俯角为30(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位)(参考数据:sin420.67,cos420.74,tan420.90,1.73)12如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45,然后沿着坡度为=1:的坡面AD走了200米达到D处,此时在D处测得山顶B的仰角为60,求山高BC(结果保留根号)13如图,在大楼AB正前方有一斜坡CD,坡角DCE=30,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为

    7、60,在斜坡上的D处测得楼顶B的仰角为45,其中点A,C,E在同一直线上(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度14某次台风袭击了我国西南部海域如图,台风来临前,我国海上搜救中心A接到一渔船遇险的报警,于是令位于A的正南方向180海里的救援队B立即施救已知渔船所处位置C在A的南偏东34方向,在B的南偏东63方向,此时离台风来到C处还有12小时,如果救援船每小时行驶20海里,试问能否在台风来到之前赶到C处对其施救?15如图,在航线l的两侧分别有观测点A和B,点A到航线l的距离为2km点B位于点A北偏东60方向且与A相距10km现有一艘轮船从位于点B南偏西76方向的C处,正沿该航

    8、线自西向东航行,5分钟后该轮船行至点A的正北方向的D处(1)求观测点B到航线l的距离;(2)求该轮船航行的速度(结果精确到0.1km/h)参考数据:1.73,sin760.97,cos760.24,tan764.01)16如图,在一笔直的海岸线上有A、B两个观测站,A在B的正东方向,AB=4km有一艘小船在点P处,从A测得小船在北偏西60的方向,从B测得小船在北偏东45的方向(1)求点P到海岸线的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到达点C处,此时,从B测得小船在北偏西15的方向求点C与点B之间的距离(上述两小题的结果都保留根号)17为缓解交通压力,市郊某地正在修建地铁站,

    9、拟同步修建地下停车库如图是停车库坡道入口的设计图,其中MN是水平线,MNAD,ADDE,CFAB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高 米)如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:1.41,1.73,3.16)18如图所示,在坡角为30的山坡上有一竖立的旗杆AB,其正前方矗立一墙,当阳光与水平线成45角时,测得旗杆AB落在坡上的影子BD的长为8米,落在墙上的影子CD的长为6米,求旗杆AB的高(结果保留根号)19为缓解交通拥堵,某区拟计划修建一地下

    10、通道,该通道一部分的截面如图所示(图中地面AD与通道BC平行),通道水平宽度BC为8米,BCD=135,通道斜面CD 的长为6米,通道斜面AB的坡度i=1:(1)求通道斜面AB的长为 米;(2)为增加市民行走的舒适度,拟将设计图中的通道斜面CD的坡度变缓,修改后的通道斜面DE的坡角为30,求此时BE的长(结果保留根号)20如图,某办公楼AB的后面有一建筑物CD,当光线与地面的夹角是22时办公楼在建筑物的墙上留下高1米的影子CE,而当光线与地面夹角是45时,办公楼顶A在地面上的影子F与墙角C有20米的距离(B,F,C在一条直线上)(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求

    11、出A,E之间的距离(精确到1米)(参考数据:sin22,cos22,tan22)21如图,我市某中学数学兴趣小组决定测量一下本校教学楼AB的高度,他们在楼梯底部C处测得ACB=60,DCE=30;沿楼梯向上走到D处测得ADF=45,D到地面BE的距离DE为3米求教学楼AB的高度(站果精确列1米,参考数据:1.4,1.7)解直角三角形应用答案一解答题(共21小题)1在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度用测角仪在A处测得雕塑顶端点C的仰角为30,再往雕塑方向前进4米至B处,测得仰角为45问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值)【解答】解:如图,过点C

    12、作CDAB,交AB延长线于点D,设CD=x米,CBD=45,BDC=90,BD=CD=x米,A=30,AD=AB+BD=4+x,tanA=,即=,解得:x=2+2,答:该雕塑的高度为(2+2)米2如图,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔C的南偏东30方向上的B处,求此时船距灯塔的距离(参考数据:1.414,1.732,结果取整数)【解答】解:过C作CDAB,在RtACD中,A=45,ACD为等腰直角三角形,AD=CD=AC=50海里,在RtBCD中,B=30,BC=2CD=100海里,根据勾股定理得:BD=50海里,则AB=A

    13、D+BD=50+50193海里,则此时船锯灯塔的距离为193海里32018年4月12日,菏泽国际牡丹花会拉开帷幕,菏泽电视台用直升机航拍技术全程直播如图,在直升机的镜头下,观测曹州牡丹园A处的俯角为30,B处的俯角为45,如果此时直升机镜头C处的高度CD为200米,点A、B、D在同一条直线上,则A、B两点间的距离为多少米?(结果保留根号)【解答】解:ECAD,A=30,CBD=45,CD=200,CDAB于点D在RtACD中,CDA=90,tanA=,AD=,在RtBCD中,CDB=90,CBD=45DB=CD=200,AB=ADDB=200200,答:A、B两点间的距离为200200米4小亮

    14、在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮通过操控器指令无人机测得桥头B,C的俯角分别为EAB=60,EAC=30,且D,B,C在同一水平线上已知桥BC=30米,求无人机飞行的高度AD(精确到0.01米参考数据:1.414,1.732)【解答】解:EAB=60,EAC=30,CAD=60,BAD=30,CD=ADtanCAD=AD,BD=ADtanBAD=AD,BC=CDBD=AD=30,AD=1525.985我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由B处望山脚A处的俯角为

    15、30,由B处望山脚C处的俯角为45,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据1.732)【解答】解:如图,作BDAC于D,由题意可得:BD=14001000=400(米),BAC=30,BCA=45,在RtABD中,即,AD=400(米),在RtBCD中,即,CD=400(米),AC=AD+CD=400+4001092.81093(米),答:隧道最短为1093米6随着航母编队的成立,我国海军日益强大2018年4月12日,中央军委在南海海域隆重举行海上阅兵,在阅兵之前我军加强了海上巡逻,如图,我军巡逻舰在某海域航行到A处时,该舰在观测点P的南偏东45的方向上,且与观测

    16、点P的距离PA为400海里;巡逻舰继续沿正北方向航行一段时间后,到达位于观测点P的北偏东30方向上的B处,问此时巡逻舰与观测点P的距离PB为多少海里?(参考数据:1.414,1.732,结果精确到1海里)【解答】解:在APC中,ACP=90,APC=45,则AC=PCAP=400海里,由勾股定理知,AP2=AC2+PC2=2PC2,即4002=2PC2,故PC=200海里又在直角BPC中,PCB=90,BPC=60,PB=2PC=400565.6(海里)答:此时巡逻舰与观测点P的距离PB约为565.6海里7由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务如图

    17、,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37方向如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长(参考数据:sin700.94,cos700.34,tan702.75,sin370.6,cos370.80,tan370.75)【解答】解:由题意得:ACD=70,BCD=37,AC=80海里,在直角三角形ACD中,CD=ACcosACD=27.2海里,在直角三角形BCD中,BD=CDtanBCD=20.4海里答:还需航行的距离BD的长为20.4海里8如图,某市郊外景区内一条笔直的公

    18、路l经过A、B两个景点,景区管委会又开发了风景优美的景点C经测量,C位于A的北偏东60的方向上,C位于B的北偏东30的方向上,且AB=10km(1)求景点B与C的距离;(2)为了方便游客到景点C游玩,景区管委会准备由景点C向公路l修一条距离最短的公路,不考虑其他因素,求出这条最短公路的长(结果保留根号)【解答】解:(1)如图,由题意得CAB=30,ABC=90+30=120,C=180CABABC=30,CAB=C=30,BC=AB=10km,即景点B、C相距的路程为10km(2)过点C作CEAB于点E,BC=10km,C位于B的北偏东30的方向上,CBE=60,在RtCBE中,CE=km9为

    19、了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45的方向上,如图所示求凉亭P到公路l的距离(结果保留整数,参考数据:1.414,1.732)【解答】解:作PDAB于D设BD=x,则AD=x+200EAP=60,PAB=9060=30在RtBPD中,FBP=45,PBD=BPD=45,PD=DB=x在RtAPD中,PAB=30,CD=tan30AD,即DB=CD=tan30AD=x=(200+x),解得:x273.2,CD=273答:凉亭P到公路l的距离为273

    20、m10如图,甲、乙两座建筑物的水平距离BC为78m,从甲的顶部A处测得乙的顶部D处的俯角为48,测得底部C处的俯角为58,求甲、乙建筑物的高度AB和DC(结果取整数)参考数据:tan48lll,tan581.60【解答】解:如图作AECD交CD的延长线于E则四边形ABCE是矩形,AE=BC=78,AB=CE,在RtACE中,EC=AEtan58125(m)在RtAED中,DE=AEtan48,CD=ECDE=AEtan58AEtan48=781.6781.1138(m),答:甲、乙建筑物的高度AB为125m,DC为38m11小婷在放学路上,看到隧道上方有一块宣传“中国南亚博览会”的竖直标语牌C

    21、D她在A点测得标语牌顶端D处的仰角为42,测得隧道底端B处的俯角为30(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位)(参考数据:sin420.67,cos420.74,tan420.90,1.73)【解答】解:如图作AEBD于E在RtAEB中,EAB=30,AB=10m,BE=AB=5(m),AE=5(m),在RtADE中,DE=AEtan42=7.79(m),BD=DE+BE=12.79(m),CD=BDBC=12.796.56.3(m),答:标语牌CD的长为6.3m12如图,某测量小组为了测量山BC的高度,在地面A处测

    22、得山顶B的仰角45,然后沿着坡度为=1:的坡面AD走了200米达到D处,此时在D处测得山顶B的仰角为60,求山高BC(结果保留根号)【解答】解:作DFAC于FDF:AF=1:,AD=200米,tanDAF=,DAF=30,DF=AD=200=100,DEC=BCA=DFC=90,四边形DECF是矩形,EC=BF=100(米),BAC=45,BCAC,ABC=45,BDE=60,DEBC,DBE=90BDE=9060=30,ABD=ABCDBE=4530=15,BAD=BAC1=4530=15,ABD=BAD,AD=BD=200米,在RtBDE中,sinBDE=,BE=BDsinBDE=200=

    23、100,BC=BE+EC=100+100(米)13如图,在大楼AB正前方有一斜坡CD,坡角DCE=30,楼高AB=60米,在斜坡下的点C处测得楼顶B的仰角为60,在斜坡上的D处测得楼顶B的仰角为45,其中点A,C,E在同一直线上(1)求坡底C点到大楼距离AC的值;(2)求斜坡CD的长度【解答】解:(1)在直角ABC中,BAC=90,BCA=60,AB=60米,则AC=20(米)答:坡底C点到大楼距离AC的值是20米(2)设CD=2x,则DE=x,CE=x,在RtABC中,ABC=30,则BC=60(米),在RtBDF中,BDF=45,BF=DF,60x=20+x,x=4060,CD=2x=80

    24、120,CD的长为(80120)米14某次台风袭击了我国西南部海域如图,台风来临前,我国海上搜救中心A接到一渔船遇险的报警,于是令位于A的正南方向180海里的救援队B立即施救已知渔船所处位置C在A的南偏东34方向,在B的南偏东63方向,此时离台风来到C处还有12小时,如果救援船每小时行驶20海里,试问能否在台风来到之前赶到C处对其施救?【解答】解:过点C作CDAB延长线于点D,DAC=34,DBC=63,设BD=x,则tan63=,故CD=BDtan63=xtan63,tan34=,解得:x94.3,故cos63=,解得:BC207.7,207.72010.4(小时),答:如果救援船每小时行驶

    25、20海里,能在台风来到之前赶到C处对其施救15如图,在航线l的两侧分别有观测点A和B,点A到航线l的距离为2km点B位于点A北偏东60方向且与A相距10km现有一艘轮船从位于点B南偏西76方向的C处,正沿该航线自西向东航行,5分钟后该轮船行至点A的正北方向的D处(1)求观测点B到航线l的距离;(2)求该轮船航行的速度(结果精确到0.1km/h)参考数据:1.73,sin760.97,cos760.24,tan764.01)【解答】解:(1)设AB与l交于点O在RtAOD中,OAD=60,AD=2(km),OA=4(km)AB=10(km),OB=ABOA=6(km)在RtBOE中,OBE=OA

    26、D=60,BE=OBcos60=3(km)答:观测点B到航线l的距离为3km(2)在RtAOD中,OD=ADtan60=2(km),在RtBOE中,OE=BEtan60=3(km),DE=OD+OE=5(km)在RtCBE中,CBE=76,BE=3(km),CE=BEtanCBE=3tan76CD=CEDE=3tan7653.38(km)5(min)=h,v=12CD=123.3840.6(km/h)答:该轮船航行的速度约为40.6km/h16如图,在一笔直的海岸线上有A、B两个观测站,A在B的正东方向,AB=4km有一艘小船在点P处,从A测得小船在北偏西60的方向,从B测得小船在北偏东45的

    27、方向(1)求点P到海岸线的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到达点C处,此时,从B测得小船在北偏西15的方向求点C与点B之间的距离(上述两小题的结果都保留根号)【解答】解:(1)如图,过点P作PDAB于点D设PD=xkm在RtPBD中,BDP=90,PBD=9045=45,BD=PD=xkm在RtPAD中,ADP=90,PAD=9060=30,AD=PD=xkmBD+AD=AB,x+x=4,x=2 2,点P到海岸线l的距离为(2 2)km;(2)如图,过点B作BFAC于点F根据题意得:ABC=105,在RtABF中,AFB=90,BAF=30,BF=AB=2km在ABC中

    28、,C=180BACABC=45在RtBCF中,BFC=90,C=45,BC=BF=2 km,点C与点B之间的距离大约为2km17为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库如图是停车库坡道入口的设计图,其中MN是水平线,MNAD,ADDE,CFAB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高2.4米)如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:1.41,1.73,3.16)【解答】解:据题意得tanB=,MNAD,A=B,tanA=,DEA

    29、D,在RtADE中,tanA=,AD=9,DE=3,又DC=0.5,CE=2.5,CFAB,FCE+2=90,DEAD,A+CEF=90,A=FCE,tanFCE=在RtCEF中,CE2=EF2+CF2设EF=x,CF=3x(x0),CE=2.5,代入得()2=x2+(3x)2解得x=(如果前面没有“设x0”,则此处应“x=,舍负”),CF=3x=2.4,该停车库限高2.4米故答案为2.418如图所示,在坡角为30的山坡上有一竖立的旗杆AB,其正前方矗立一墙,当阳光与水平线成45角时,测得旗杆AB落在坡上的影子BD的长为8米,落在墙上的影子CD的长为6米,求旗杆AB的高(结果保留根号)【解答】

    30、解:过点C作CEAB于E,过点B作BFCD于F,在RtBFD中,DBF=30,sinDBF=,cosDBF=,BD=8m,DF=4m,BF=4m,ABCD,CEAB,BFCD,四边形BFCE为矩形,BF=CE=4m,CF=BE=CDDF=2m,在RtACE中,ACE=45,AE=CE=4m,AB=4+2答:旗杆AB的高为(4+2)m19为缓解交通拥堵,某区拟计划修建一地下通道,该通道一部分的截面如图所示(图中地面AD与通道BC平行),通道水平宽度BC为8米,BCD=135,通道斜面CD 的长为6米,通道斜面AB的坡度i=1:(1)求通道斜面AB的长为3米;(2)为增加市民行走的舒适度,拟将设计

    31、图中的通道斜面CD的坡度变缓,修改后的通道斜面DE的坡角为30,求此时BE的长(结果保留根号)【解答】解:(1)过点A作ANCB于点N,过点D作DMBC于点M,BCD=135,DCM=45在RtCMD中,CMD=90,CD=6,DM=CM=CD=3,AN=DM=3,通道斜面AB的坡度i=1:,tanABN=,BN=AN=6,AB=3即通道斜面AB的长约为3米;故答案为:3;(2)在RtMED中,EMD=90,DEM=30,DM=3,EM=DM=3,EC=EMCM=33,BE=BCEC=8(33)=8+33即此时BE的长约为(8+33)米20如图,某办公楼AB的后面有一建筑物CD,当光线与地面的

    32、夹角是22时办公楼在建筑物的墙上留下高1米的影子CE,而当光线与地面夹角是45时,办公楼顶A在地面上的影子F与墙角C有20米的距离(B,F,C在一条直线上)(1)求办公楼AB的高度;(2)若要在A,E之间挂一些彩旗,请你求出A,E之间的距离(精确到1米)(参考数据:sin22,cos22,tan22)【解答】解:(1)过点E作EMAB于点M,设AB=x,在RtABF中,AFB=45,BF=AB=x,BC=BF+FC=x+20在RtAEM中,AEM=22,AM=ABCE=x1,tan22=,即=,解得,x=15办公楼AB的高度为15米;(2)在RtAME中,cos22=,AE=37米A,E之间的

    33、距离为37米21如图,我市某中学数学兴趣小组决定测量一下本校教学楼AB的高度,他们在楼梯底部C处测得ACB=60,DCE=30;沿楼梯向上走到D处测得ADF=45,D到地面BE的距离DE为3米求教学楼AB的高度(站果精确列1米,参考数据:1.4,1.7)【解答】解:如图,在RtDCE中,DCE=30、DE=3,CD=2DE=6,ACB=60,ACD=180DCEACB=90,CDF=DCE=30,在RtDCF中,DF=4,设AG=x,ADF=45,DG=AG=x,FG=DGDF=x4,在RtAFG中,AFG=ACB=60,tanAFG=,即=,解得:x=6+6,即AG=6+6,AB=AG+BG=6+6+3=9+619(米),答:教学楼AB的高度约为19米 .

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:解直角三角形应用专题带答案-(DOC 30页).doc
    链接地址:https://www.163wenku.com/p-5867937.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库