立体几何专题有答案(DOC 17页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《立体几何专题有答案(DOC 17页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何专题有答案DOC 17页 立体几何 专题 答案 DOC 17
- 资源描述:
-
1、 立体几何答案 翰林学校 宗克志26.【2012高考辽宁理18】(本小题满分12分) 如图,直三棱柱,点M,N分别为和的中点。 ()证明:平面; ()若二面角为直二面角,求的值。【命题意图】本题主要考查线面平行的判定、二面角的计算,考查空间想象能力、运算求解能力,是容易题.【解析】(1)连结,由已知三棱柱为直三棱柱,所以为中点.又因为为中点所以,又平面 平面,因此 6分(2)以为坐标原点,分别以直线为轴,轴,轴建立直角坐标系,如图所示设则,于是,所以,设是平面的法向量,由得,可取设是平面的法向量,由得,可取因为为直二面角,所以,解得12分【点评】本题以三棱柱为载体主要考查空间中的线面平行的判定
2、,借助空间直角坐标系求平面的法向量的方法,并利用法向量判定平面的垂直关系,考查空间想象能力、推理论证能力、运算求解能力,难度适中。第一小题可以通过线线平行来证明线面平行,也可通过面面平行来证明。27.【2012高考湖北理19】(本小题满分12分)如图1,过动点A作,垂足D在线段BC上且异于点B,连接AB,沿将折起,使(如图2所示) ()当的长为多少时,三棱锥的体积最大;()当三棱锥的体积最大时,设点,分别为棱,的中点,试在棱上确定一点,使得,并求与平面所成角的大小DABCACDB图2图1ME.第19题图【答案】()解法1:在如图1所示的中,设,则由,知,为等腰直角三角形,所以.由折起前知,折起
3、后(如图2),且,所以平面又,所以于是 ,当且仅当,即时,等号成立,故当,即时, 三棱锥的体积最大 解法2:同解法1,得 令,由,且,解得当时,;当时, 所以当时,取得最大值故当时, 三棱锥的体积最大 ()解法1:以为原点,建立如图a所示的空间直角坐标系由()知,当三棱锥的体积最大时,于是可得,且设,则. 因为等价于,即,故,.所以当(即是的靠近点的一个四等分点)时, 设平面的一个法向量为,由 及,得 可取 设与平面所成角的大小为,则由,可得,即CADB图aEMxyz图bCADBEFMN 图cBDPCFNEBGMNEH图d第19题解答图N 故与平面所成角的大小为 解法2:由()知,当三棱锥的体
4、积最大时,如图b,取的中点,连结,则.由()知平面,所以平面.如图c,延长至P点使得,连,则四边形为正方形,所以. 取的中点,连结,又为的中点,则,所以. 因为平面,又面,所以. 又,所以面. 又面,所以.因为当且仅当,而点F是唯一的,所以点是唯一的.即当(即是的靠近点的一个四等分点), 连接,由计算得,所以与是两个共底边的全等的等腰三角形,如图d所示,取的中点,连接,则平面在平面中,过点作于,则平面故是与平面所成的角 在中,易得,所以是正三角形,故,即与平面所成角的大小为 31.【2012高考福建理18】如图,在长方体ABCD-A1B1C1D1中AA1=AD=1,E为CD中点.()求证:B1
5、EAD1;()在棱AA1上是否存在一点P,使得DP平面B1AE?若存在,求AP的行;若存在,求AP的长;若不存在,说明理由. ()若二面角A-B1EA1的大小为30,求AB的长.【答案】本题主要考查立体几何中直线与直线、直线与平面的位置关系及二面角的概念与求法等基础知识,考查空间想象能力、推理论证能力、基本运算能力,以及函数与方程的思想、数形结合思想、化归与转化思想.解答:()长方体中, 得:面面()取的中点为,中点为,连接 在中,面 此时()设,连接,过点作于点,连接 面, 得:是二面角的平面角 在中, 在矩形中, 得:32.【2012高考北京理16】(本小题共14分) 如图1,在RtABC
6、中,C=90,BC=3,AC=6,D,E分别是AC,AB上的点,且DEBC,DE=2,将ADE沿DE折起到A1DE的位置,使A1CCD,如图2.(I)求证:A1C平面BCDE;(II)若M是A1D的中点,求CM与平面A1BE所成角的大小;(III)线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由【答案】解:(1),平面,又平面,又,平面。(2)如图建系,则,,设平面法向量为则 又,与平面所成角的大小。(3)设线段上存在点,设点坐标为,则则,设平面法向量为,则 。假设平面与平面垂直,则,不存在线段上存在点,使平面与平面垂直。33.【2012高考浙江理20】(本小题满分15分)如
7、图,在四棱锥PABCD中,底面是边长为的菱形,且BAD120,且PA平面ABCD,PA,M,N分别为PB,PD的中点()证明:MN平面ABCD;() 过点A作AQPC,垂足为点Q,求二面角AMNQ的平面角的余弦值【命题立意】本题主要考查空间点、线、面的位置关系,二面角所成角等基础知识,同时考查空间想象能力和推理论证能力。【答案】()如图连接BDM,N分别为PB,PD的中点,在PBD中,MNBD又MN平面ABCD,MN平面ABCD;()如图建系:A(0,0,0),P(0,0,),M(,0),N(,0,0),C(,3,0)设Q(x,y,z),则,由,得: 即:对于平面AMN:设其法向量为则 同理对
8、于平面AMN得其法向量为记所求二面角AMNQ的平面角大小为,则所求二面角AMNQ的平面角的余弦值为35.【2012高考江西理19】(本题满分12分)在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=,BC=4,在A1在底面ABC的投影是线段BC的中点O。(1)证明在侧棱AA1上存在一点E,使得OE平面BB1C1C,并求出AE的长;(2)求平面A1B1C与平面BB1C1C夹角的余弦值。解:(1)证明:连接AO,在中,作于点E,因为,得,ByOCAEzA11B1C1x因为平面ABC,所以,因为,得,所以平面,所以,所以平面,又,得(2)如图所示,分别以所在的直线为x,y,z轴建立空间直角坐标
展开阅读全文