立体几何的体积和表面积辅导讲义讲解(DOC 17页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《立体几何的体积和表面积辅导讲义讲解(DOC 17页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何的体积和表面积辅导讲义讲解DOC 17页 立体几何 体积 表面积 辅导 讲义 讲解 DOC 17
- 资源描述:
-
1、 学科教师辅导教案 学员姓名 年 级高一 辅导科目数 学授课老师课时数2h 第 次课授课日期及时段 2016年 月 日 : : 空间几何体的表面积和体积 1空间几何体的结构特征多面体(1)棱柱的侧棱都平行且相等,上、下底面是全等的多边形. (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形. (3)棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形.旋转体(1)圆柱可以由矩形绕其任一边所在直线旋转得到. (2)圆锥可以由直角三角形绕其直角边所在直线旋转得到. (3)圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上、下底中点连线所在直线旋转得到,也可由平行于底面的平面截圆锥得到
2、. (4)球可以由半圆或圆绕直径所在直线旋转得到.2.三视图与直观图三视图画法规则:长对正,高平齐,宽相等直观图空间几何的直观图:常用斜二测画法来画. 基本步骤是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中x轴,y轴的夹角为45(或135),z轴与x轴和y轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段在直观图中长度为原来的一半.3.柱、锥、台和球的表面积和体积 名称几何体表面积体积柱体(棱柱和圆柱)S表面积S侧2S底VSh锥体(棱锥和圆锥)S表面积S侧S底VSh台体(棱台和圆台)S表面积S侧S上S下
3、V(S上S下)h球S4R2VR3【思考辨析】判断下面结论是否正确(请在括号中打“”或“”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱()(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥()(3)用斜二测画法画水平放置的A时,若A的两边分别平行于x轴和y轴,且A90,则在直观图中,A45.()(4)正方体、球、圆锥各自的三视图中,三视图均相同()(5)圆柱的侧面展开图是矩形()(6)台体的体积可转化为两个锥体的体积之差来计算()1下列说法正确的是()A相等的角在直观图中仍然相等B相等的线段在直观图中仍然相等C正方形的直观图是正方形D若两条线段平行,则在直观图中对应的两条线段
4、仍然平行答案D解析由直观图的画法规则知,角度、长度都有可能改变,而线段的平行性不变2某空间几何体的正视图是三角形,则该几何体不可能是()A圆柱 B圆锥 C四面体 D三棱柱答案A解析由三视图知识知圆锥、四面体、三棱柱(放倒看)都能使其正视图为三角形,而圆柱的正视图不可能为三角形,故选A.3将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A4 B3 C2 D答案C解析底面圆半径为1,高为1,侧面积S2rh2112.故选C.4将边长为a的正方形ABCD沿对角线AC折起,使得BDa,则三棱锥DABC的体积为()A. B. C.a3 D.a3答案D解析O是AC的中点,连接DO
5、,BO,ADC,ABC都是等腰直角三角形因为DOBOa,BDa,所以BDO也是等腰直角三角形又因为DOAC,DOBO,ACBOO,所以DO平面ABC,即DO就是三棱锥DABC的高因为SABCa2,所以三棱锥DABC的体积为a2aa3,故选D.题型一空间几何体的结构特征例1给出下列命题:棱柱的侧棱都相等,侧面都是全等的平行四边形;若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;存在每个面都是直角三角形的四面体;棱台的侧棱延长后交于一点其中正确命题的序号是_答案解析不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一
6、定全等;正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;正确,如图,正方体AC1中的三棱锥C1ABC,四个面都是直角三角形;正确,由棱台的概念可知思维升华(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析 给出下列命题:在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;有一个面
7、是多边形,其余各面都是三角形的几何体是棱锥;直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;棱台的上、下底面可以不相似,但侧棱长一定相等其中正确命题的个数是()A0 B1 C2 D3答案A解析不一定,只有当这两点的连线平行于轴时才是母线;不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图1所示;不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等 图1图2题型二空间几何体的三视图和直
8、观图例2(1)一几何体的直观图如图,下列给出的四个俯视图中正确的是()(2)正三角形AOB的边长为a,建立如图所示的直角坐标系xOy,则它的直观图的面积是_思维点拨(1)由上向下看,可见线段都应画出;(2)与x轴平行或重合的线段长度不变,与y轴平行或重合的线段长度为原来的.解析(1)该几何体是组合体,上面的几何体是一个五面体,下面是一个长方体,且五面体的一个面即为长方体的一个面,五面体最上面的棱的两端点在底面的射影距左右两边距离相等,因此选B.(2)画出坐标系xOy,作出OAB的直观图OAB(如图)D为OA的中点易知DBDB(D为OA的中点),SOABSOABa2a2.思维升华(1)三视图中,
9、正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽,即“长对正,宽相等,高平齐”;(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系 (1)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A三棱锥 B三棱柱 C四棱锥 D四棱柱(2)如图,矩形OABC是水平放置的一个平面图形的直观图,其中OA6 cm,OC2 cm,则原图形是()A正方形 B矩形 C菱形 D一般的平行四边形答案(1)B(2)C解析(1)如图,几何体为三棱柱(
10、2)如图,在原图形OABC中,应有OD2OD224 cm,CDCD2 cm.OC6 cm,OAOC,故四边形OABC是菱形题型三空间几何体的表面积与体积例3(1)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm,高为6 cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为() A. B. C. D.(2)一个多面体的三视图如图所示,则该多面体的体积为() A. B. C6 D7(3)有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,则这三个球的表面积之比为_思维点拨(1
11、)由侧视图,可想到几何体为两圆柱的组合体;(2)考虑实、虚线的意义答案(1)C(2)A(3)123解析(1)由三视图可知几何体是如图所示的两个圆柱的组合体其中左面圆柱的高为4 cm,底面半径为2 cm,右面圆柱的高为2 cm,底面半径为3 cm,则组合体的体积V1224322161834(cm3),原毛坯体积V232654(cm3),则所求比值为.(2)该几何体是正方体去掉两个角所形成的多面体,其体积为V2222111.(3)设正方体的棱长为a,正方体的内切球球心是正方体的中心,切点是六个面的中心,经过四个切点及球心作截面如图所示,有2r1a,r1,S14ra2.球与正方体的各条棱的切点在各棱
12、的中点,过球心作正方体的对角面得截面如图所示,有2r2a,r2a,S24r2a2.正方体的各顶点在球面上,过球心作正方体的对角面得截面如图所示,有2r3a,r3a,S34r3a2.综上可得,S1S2S3123.思维升华(1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)由三视图求几何体的面积、体积,关键是由三视图还原几何体,同时还需掌握求体积的常用技巧如:割补法和等价转化法 (1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A48 B328 C488 D80(2)把边长为1的正方形ABCD沿对角线BD折起,使得平面ABD平面CBD,
13、形成三棱锥CABD的正视图与俯视图如图所示,则侧视图的面积为()A. B. C. D.答案(1)C(2)C解析(1)由三视图知该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为.所以S表4224(24)4242488.(2)因为C在平面ABD上的射影为BD的中点O,在边长为1的正方形ABCD中,AOCOAC,所以侧视图的面积等于SAOCCOAO,故选C.三视图识图中的易误辨析典例:将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的侧视图为()易
展开阅读全文