书签 分享 收藏 举报 版权申诉 / 5
上传文档赚钱

类型复数的概念教学设计参考模板范本.doc

  • 上传人(卖家):林田
  • 文档编号:5861777
  • 上传时间:2023-05-12
  • 格式:DOC
  • 页数:5
  • 大小:55.05KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《复数的概念教学设计参考模板范本.doc》由用户(林田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    复数 概念 教学 设计 参考 模板 范本
    资源描述:

    1、复数的概念教学设计 教学任务分析教学目标知识技能通过理解数系的扩充过程,掌握复数的基本概念,并能理解复数的几何意义。数学思考通过观察数系的每一次扩充,体会为什么要引入复数,并通过学习复数的几何意义,领悟数形结合的数学思想。解决问题利用复数的定义解决负数开方的问题。情感态度1.激发学生的创新意识。2.积极参与数学学习活动,增强对数学有好奇心和求知欲。重点复数的定义和复数的几何意义。 难点复数的引入,理解复数引入的必要性以及复数与复平面和向量的一一对应关系。教学流程安排活动流程图活动内容和目的活动1:知识导入,活动2:历史回顾活动3:辨析定义活动4:类比研究活动5:小结练习.1通过回顾数系的扩充过

    2、程,体会引入和学习复数的必要性。2通过介绍数学史上有关复数的发展历程,认识到复数在解决数学问题上的重要性。 3教师引导,学生探究并归纳总结复数的概念。4通过介绍复数与复平面和向量的一一对应,让同学们进一步认识复数5回顾本节课的内容。学生畅所欲言,回眸所学知识,从而达到画龙点睛的效果,并布置练习加强巩固。教学过程设计问题与情景师生行为设计意图活动1:给出4个方程求解的问题。以下4个方程在对应的数系中是否有解?x+1=0 N2x=1 Z Q R老师给出4个方程求解的问题,引导学生回顾数系的一步一步扩充的过程,为引入复数做铺垫。.本次活动,旨在提供学生参与活动的空间,调动学生的主观能动作用,激发学生

    3、的好奇心与求知欲。为本节课的学习作好准备.活动2: 历史回顾老师带领大家一起学习数学史的相关知识,回顾在数学的发展史上,复数的的发现以及发展历程,让同学们从历史的角度认识到复数学习的重要性和必要性。数学的发展是伴随着社会的需要和数学本身发展的需要的。同学们在学习数学史的过程中,可以帮助他们理清数学学习的思路和某些数学问题的历史重要性。活动3:引入虚数单位i,并规定给出复数的概念:形如z=a+bi这样的数称为复数,其中a称为复数的实部,b称为复数的虚部,且a,b都为实数。并引入复数集,用大写字母C表示。根据复数的基本形式,对复数进一步分类。当b=0时,a+bi就是实数,当b0时,a+bi是虚数,

    4、其中a=0且b0时称为纯虚数。 复数相等的概念如果两个复数a+bi与c+di相等,则等价于a=c且b=d.并在此强调,复数一般不能比较大小。典型例题选讲1、已知 (2x-1) + i = y -(3-y)i ,其中 x , y R,求 x 与 y .2、已知 x2+y2-6 + (x-y-2)i =0,求实数 x 与 y 的值.学生通过看书,预先了解复数的概念,并在老师的引导下进一步认识复数的基本形式。通过对复数中实部与虚部取值范围的讨论,让同学们理解复数与实数的关系。对复数定义的更深一步理解。通过例题的讲解,了解学生的知识掌握程度。可以让学生先自己解答,老师再做讲解。.引导学生正确描述判定方

    5、法,养成梳理、归纳知识的习惯,提高学生的语言表达能力.通过合作交流,得出定义。学生在接触到一个新的定义时,可以给学生一些典型的例题,让学生在解决实际问题的基础上,进一步理解概念巩固概念,对概念有深刻的认识。活动4:复数的几何意义。 复数与复平面的一一对应复数z=a+bi与直角坐标系中的点Z(a,b)一一对应建立了平面直角坐标系来表示复数的平面,简称复平面,其中X轴称为实轴,Y轴称为虚轴(虚轴不包括原点)。 复数与平面向量的一一对应 在平面直角坐标系中,每一个平面向量都可以用一个有序实数对来表示,而有序实数对与复数时一一对应的,这样,我们可以用平面向量来表示复数。复数z=a+bi与平面向量 一一

    6、对应 典型例题选讲已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围。 通过复数与复平面的一一对应和向量的一一对应,理解数形结合的思想,并把现在学习的新知识与以往学习的知识联系在一起。解决实际问题。体会数形结合的思想。表示复数的点所在象限的问题(几何问题)复数的实部与虚部所满足的不等式组的问题(代数问题)把新学习的知识与之前学习的知识进一步融合,让学生在发现中学习,并理解知识点之间的关系,有利于对新知识的理解和旧知识的巩固。在解决具体问题时所发现的新的数学思想方法,可以帮助同学们在今后的学习中多角度的思考问题,解答问题,有利于学生思维的拓展

    7、。活动5小结:1、通过数系的扩充过程引入复数。通过对数学史知识的了解知道了复数的重要性和学习复数的必要性。2、复数的概念和复数的几何意义。3、通过本节课的学习,你有哪些收获?你还有什么疑惑吗?布置作业:课本134页1、2、3小题课后思考: 我们之前在学习是实数时,都会涉及到数的运算问题,那么对于复数,我们是不是也可以定义相关的运算呢?可以的话,怎么定义呢? 学生:回顾;总结.教师组织学生回顾本节课学习的内容。谈谈自己的收获,不拘形式,有多少说多少,鼓励学生大胆质疑.总结回顾学习内容,组织学生归纳,进一步梳理知识,巩固知识,使学生养成自我评价的良好习惯。学生通过课后完成作业巩固本节知识。思考题给学生留有继续学习的空间和兴趣。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:复数的概念教学设计参考模板范本.doc
    链接地址:https://www.163wenku.com/p-5861777.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库