矩形的性质教学设计参考模板范本.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《矩形的性质教学设计参考模板范本.doc》由用户(林田)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 矩形 性质 教学 设计 参考 模板 范本
- 资源描述:
-
1、矩形的性质 教学目标:1、会证明矩形的性质定理及直角三角形斜边上中线的有关性质定理.2、能运用矩形的性质定理或有关定理进行简单的计算与证明.3、在进行探索、猜想、证明的过程中,能将命题由文字语言转化为图形与符号语言,进一步发展推理论证的能力.教学重难点: 矩形性质定理的综合应用.学习过程:一 、情境创设用一个平行四边形活动框架,演示从平行四边形到矩形的演变过程,得到矩形的概念,并理解矩形与平行四边形的关系二、探索活动:1、在平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(让学生观察对角线的变化),拉动一对不相邻的顶点,改变平行四边形的形状 随着的变化,两条对角线的长度分别是怎样变化
2、的? 当是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作,思考、交流、归纳后得到矩形的性质矩形的性质:矩形是一种特殊的平行四边形,具有平行四边形的一切性质,同时矩形又是特殊的平行四边形,比平行四边形多了一个角是直角的条件,因而它就增加了一些特殊性质: 矩形的4个角都是直角; 矩形的对角线相等.2、如图,矩形ABCD,对角线相交于E,图中全等三角形有哪些?图中有哪些相等的线段?将目光锁定在RtABC中,你能看到并想到它有什么特殊的性质吗?“直角三角形斜边上的中线等于斜边的一半.”现在我们借助于矩形来证明.已知:如图,在ABC中,ACB=90. 求证
3、:边AB上的中线等于AB.三、例题精讲例1如图,矩形ABCD的两条对角线相交于点O ,且AC=2CD,求证: OCD为等边三角形.分析:利用矩形的性质:矩形的对角线相等且互相平分,结合“AC=2AB”即可证得.本题若将“AC=2AB”改为“BOC=120”, 你还能得到以上结论?例2如图,在矩形ABCD中,BE平分ABC,交CD于点E,点F在边BC上, 如果FEAE,求证FE=AE.如果FE=AE 你能证明FEAE吗?(有平行、角平分线这两个条件时一般就会有等腰三角形)例3如图 BD,CE 是ABC的两条高,M是BC的中点,求证:ME=MD.思考:连接DE,N是DE的中点,求证:MN垂直平分DE.四、课堂小结:1矩形的定义、性质;2直角三角形斜边上的中线的性质3从位置、形状、大小等不同的角度,观察和比较平行四边形、矩形的对角线把它们分成的三角形的异同,发现并应用直角三角形的判定证明矩形的特殊性质;反过来,我们又利用矩形的性质证明“直角三角形中斜边上的中线等于斜边的一半” .五、体会与交流本节课,我们又证明了哪些定理?运用那些方法呢?
展开阅读全文