书签 分享 收藏 举报 版权申诉 / 4
上传文档赚钱

类型曲边教学设计.doc

  • 上传人(卖家):清风明月心
  • 文档编号:5861385
  • 上传时间:2023-05-12
  • 格式:DOC
  • 页数:4
  • 大小:98KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《曲边教学设计.doc》由用户(清风明月心)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    教学 设计
    资源描述:

    1、教学设计曲边梯形的面积一、教学内容解析本节课是人教A版选修2-2第一章第五节定积分的概念的起始课曲边梯形的面积是定积分概念的几何背景,求曲边梯形面积的过程蕴涵着定积分的基本思想方法,为引入定积分的概念和体会定积分的基本思想奠定基础.二、教学目标1. 理解并会初步应用求曲边梯形面积的一般方法“分割近似代替求和取极限” 2. 经历求曲边梯形面积的过程,体验“以直代曲”和“无限逼近”的思想方法,感受数学中的转化与化归思想3. 通过曲边梯形的面积这一实例,了解定积分的几何背景,借助几何直观体会定积分的基本思想二、教学重点1.了解定积分的实际背景2.了解“以直代曲”“ 无限逼近”的思想方法三、教学难点

    2、会求曲边梯形的面积 四、教学过程:1.新课引入在割圆术中为什么用正多边形的面积计算圆的面积?为什么要逐次加倍正多边形的边数?设计意图:通过问题引导学生回忆割圆术的作法,并结合计算机模拟割圆术,引导学生思考割圆术中的思想方法“以直代曲”和“无限逼近”2.新知世界1连续函数如果函数在某个区间I上的图象是一条连续不断的曲线,那么就把它称为区间I上的连续函数2曲边梯形的面积(1)曲边梯形:由直线和曲线所围成的图形称为曲边梯形(2)求曲边梯形面积的方法把区间a,b分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形,对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面

    3、积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值3.例题讲解 例1求曲线与,所围成的区域的面积问题1:为了逐步减小误差,需要对曲边梯形进行分割,具体怎样分割?问题2:对每个小曲边梯形如何以直代曲?问题3:如何得到整个曲边梯形的近似值?问题4:直边图形的面积和怎样才能越来越接近曲边梯形面积的准确值?能否得到准确值?问题5:我们用每一个小区间的左、右端点的函数值和作为近似值计算面积,如果取任意处的函数值来计算小曲边梯形面积的近似值,情况又怎样?解将区间0,1等分为n个小区间(如图所示):,每个小区间的长度为过各分点作x轴的垂线,把曲边梯形分成n个小曲边梯形,再分别用小区间左端点的纵坐标为为

    4、高,为底作小矩形,于是图中曲线之下矩形面积之和为:由此得到从图形上看,当n越大时,划分越来越细,阴影部分的面积与曲边梯形面积相差越来越小当时,阴影部分趋近于曲边三角形,因此,可以将视为此曲边三角形的面积迁移体验求直线与曲线所围成曲边梯形的面积解:将区间0,2分成n个小区间,则第i个小区间为,第i个小区间的面积所求曲面面积为.思 悟 升 华回顾本节课,我们发现对一般的曲边梯形面积问题都可以应用“以直代曲,无限逼近”的思想,通过“分割近似代替求和取极限”四个步骤来解决我们还发现,这一类问题最终都归结为一个特殊结构的和式的极限,即,在数学上我们将其定义为一种新的数学运算定积分通过这个环节的教学,让学生体会数学概念的发生和发展过程,同时激起对定积分学习的期待总之,曲边梯形的面积这部分的教学,应使学生初步体会定积分的基本思想是从有限中认识无限、从近似中认识精确、从量变中认识质变的一种数学思想本节课在教学设计和实施过程中,努力创设一个探索数学的学习环境,力求符合学生的认知规律,充分发挥学生的主体意识,使学生在探究问题的过程中,亲身体验数学概念形成的过程

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:曲边教学设计.doc
    链接地址:https://www.163wenku.com/p-5861385.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库