书签 分享 收藏 举报 版权申诉 / 53
上传文档赚钱

类型精选大学线性代数习题课资料课件.ppt

  • 上传人(卖家):ziliao2023
  • 文档编号:5860058
  • 上传时间:2023-05-12
  • 格式:PPT
  • 页数:53
  • 大小:2.12MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《精选大学线性代数习题课资料课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    精选 大学 线性代数 习题 资料 课件
    资源描述:

    1、利用范德蒙行列式计算利用范德蒙行列式计算例例计算计算利用范德蒙行列式计算行列式,应根据范德利用范德蒙行列式计算行列式,应根据范德蒙行列式的特点,将所给行列式化为范德蒙行列蒙行列式的特点,将所给行列式化为范德蒙行列式,然后根据范德蒙行列式计算出结果。式,然后根据范德蒙行列式计算出结果。.333222111222nnnDnnnn,于是得到,于是得到增至增至幂次数便从幂次数便从则方则方若提取各行的公因子,若提取各行的公因子,递升至递升至而是由而是由变到变到序排列,但不是从序排列,但不是从次数自左至右按递升次次数自左至右按递升次方幂方幂数的不同方幂数的不同方幂中各行元素分别是一个中各行元素分别是一个1

    2、0.1,10,nnnDn解解.1333122211111!121212nnnnDnnnn 上面等式右端行列式为上面等式右端行列式为n阶范德蒙行列式,由阶范德蒙行列式,由范德蒙行列式知范德蒙行列式知!.1!2)!2()!1(!)1()2()24)(23()1()13)(12(!)(!1 nnnnnnnnxxnDjinjin评注评注本题所给行列式各行(列)都是某元本题所给行列式各行(列)都是某元素的不同方幂,而其方幂次数或其排列与范德蒙素的不同方幂,而其方幂次数或其排列与范德蒙行列式不完全相同,需要利用行列式的性质(如行列式不完全相同,需要利用行列式的性质(如提取公因子、调换各行(列)的次序等)将

    3、此行提取公因子、调换各行(列)的次序等)将此行列式化成范德蒙行列式列式化成范德蒙行列式用化三角形行列式计算用化三角形行列式计算例例计算计算.43213213213211xaaaaaaxaaaaaxaaaaaxDnnnn 解解列都加到第一列,得列都加到第一列,得将第将第1,3,2 nxaaaxaxaaxaaxaxaaaaxDniinniinniinniin32121212111 提取第一列的公因子,得提取第一列的公因子,得.1111)(32222111xaaaxaaaxaaaaxDnnnniin 后后一一列列,得得倍倍加加到到最最列列的的将将第第列列,倍倍加加到到第第列列的的列列,将将第第倍倍加

    4、加到到第第列列的的将将第第)(1,3)(12)(11aaan .)()(11 niiniiaxaxaxaaaaaxaaaxaxDnniin 23122121111010010001)(评注评注本题利用行列式的性质,采用本题利用行列式的性质,采用“化零化零”的方法,逐步将所给行列式化为三角形行列式的方法,逐步将所给行列式化为三角形行列式化零时一般尽量选含有的行(列)及含零较多化零时一般尽量选含有的行(列)及含零较多的行(列);若没有,则可适当选取便于化零的行(列);若没有,则可适当选取便于化零的数,或利用行列式性质将某行(列)中的某数的数,或利用行列式性质将某行(列)中的某数化为化为1 1;若所

    5、给行列式中元素间具有某些特点,则;若所给行列式中元素间具有某些特点,则应充分利用这些特点,应用行列式性质,以达到应充分利用这些特点,应用行列式性质,以达到化为三角形行列式之目的化为三角形行列式之目的,得,得提取公因子提取公因子行中行中行,并从第行,并从第行都加到第行都加到第、的第的第将将dcbaD 114324用降阶法计算用降阶法计算例例计算计算.4abcdbadccdabdcbaD 解解,1111)(4abcdbadccdabdcbaD 列,得列,得列都减去第列都减去第、再将第再将第1432,0001)(4dadbdcdcbcacdcbcbdbabdcbaD 行展开,得行展开,得按第按第1.

    6、)(4dadbdccbcacdbcbdbadcbaD ,得得中中提提取取公公因因子子行行行行,再再从从第第行行加加到到第第把把上上面面右右端端行行列列式式第第dcba 112,011)(dadbdccbcacddcbadcbaD 列,得列,得列减去第列减去第再将第再将第12行展开,得行展开,得按第按第1)()()(22cbdadcbadcba )()(dcbadcbadcbadcba ,001)(4dacbdccbdacddcbadcbaD dacbcbdadcbadcbaD )(评注评注本题是利用行列式的性质将所给行列本题是利用行列式的性质将所给行列式的某行(列)化成只含有一个非零元素,然后

    7、式的某行(列)化成只含有一个非零元素,然后按此行(列)展开,每展开一次,行列式的阶数按此行(列)展开,每展开一次,行列式的阶数可降低可降低 1阶,如此继续进行,直到行列式能直接阶,如此继续进行,直到行列式能直接计算出来为止(一般展开成二阶行列式)这种计算出来为止(一般展开成二阶行列式)这种方法对阶数不高的数字行列式比较适用方法对阶数不高的数字行列式比较适用用加边法计算用加边法计算例例计算计算解解.21xaaaaxaaaaxaDnn 1111000111nnaxaaDaaxaaaax1111111nnaaaxDxx111110nnnaaaaxxxx1111niinnaaaaxxxx1211nni

    8、iax xxx用递推法计算用递推法计算例例计算计算.21xaaaaxaaaaxaDnn 解解拆成两个行列式之和拆成两个行列式之和列把列把依第依第DnnaaaaaxaaaaaxaaaaaxaDnn121 .000121xaaaxaaaaxaaaaxann .1121DxaxxxDnnnn 从而从而得得列展开列展开第第右端的第二个行列式按右端的第二个行列式按列列加到第加到第倍分别倍分别列的列的将第将第右端的第一个行列式右端的第一个行列式,1,2,1)1(,nnn ,0000000001121DxaaxaxaxDnnnn 由此递推,得由此递推,得.,2122121212211Dxxxaxxxaxxx

    9、DDxaxxxDnnnnnnnnnnn 于是于是如此继续下去,可得如此继续下去,可得DxxxxxaxxxaxxxaxxxDnnnnnnn23142122121 )(21213142122121xxxaxaxxxxxaxxxaxxxaxxxnnnnnn ).(323112121xxxxxxxxxaxxxnnnn 时,还可改写成时,还可改写成当当021 xxxn).111(12121xxxaxxxDnnn 评注评注.1 1.1,1 1的递推关系的递推关系列式更低阶行列式之间列式更低阶行列式之间阶行阶行,建立比,建立比阶更低阶的行列式表示阶更低阶的行列式表示比比用同样形式的用同样形式的阶行列式阶行列

    10、式时,还可以把给定的时,还可以把给定的有有之间的递推关系之间的递推关系阶行列式阶行列式与与建立了建立了阶行列式表示出来阶行列式表示出来用同样形式的用同样形式的行列式行列式阶阶质把所给的质把所给的本题是利用行列式的性本题是利用行列式的性 nnDnDnDnDnnnnn用数学归纳法用数学归纳法例例证明证明.coscos21000100000cos210001cos210001cos nDn 证证对阶数对阶数n用数学归纳法用数学归纳法.,2,1,2cos1cos22cos11cos,cos 221结论成立结论成立时时当当所以所以因为因为 nnDD 得得展展开开按按最最后后一一行行现现将将的的行行列列式

    11、式也也成成立立于于阶阶数数等等于于下下证证对对的的行行列列式式结结论论成成立立假假设设对对阶阶数数小小于于,.,Dnnn.cos221DDDnnn ,)2cos(,)1cos(,21 nDnDnn由归纳假设由归纳假设;cos)2cos()2cos(cos)2cos()1cos(cos2 nnnnnnDn .结论成立结论成立所以对一切自然数所以对一切自然数n评注评注.,)1(1,)(,21同型的行列式同型的行列式是与是与不不否则所得的低阶行列式否则所得的低阶行列式展开展开列列或第或第行行按第按第不能不能展开展开列列或第或第行行本例必须按第本例必须按第表示表示展开成能用其同型的展开成能用其同型的为

    12、了将为了将DnnDDDnnnn .,.,其猜想结果成立其猜想结果成立然后用数学归纳法证明然后用数学归纳法证明也可先猜想其结果也可先猜想其结果如果未告诉结果如果未告诉结果纳法来证明纳法来证明可考虑用数学归可考虑用数学归结论时结论时证明是与自然数有关的证明是与自然数有关的而要我们而要我们当行列式已告诉其结果当行列式已告诉其结果一般来讲一般来讲计算行列式的方法比较灵活,同一行列式可计算行列式的方法比较灵活,同一行列式可以有多种计算方法;有的行列式计算需要几种方以有多种计算方法;有的行列式计算需要几种方法综合应用在计算时,首先要仔细考察行列式法综合应用在计算时,首先要仔细考察行列式在构造上的特点,利用

    13、行列式的性质对它进行变在构造上的特点,利用行列式的性质对它进行变换后,再考察它是否能用常用的几种方法换后,再考察它是否能用常用的几种方法小结小结当线性方程组方程个数与未知数个数相等、当线性方程组方程个数与未知数个数相等、且系数行列式不等于零时,可用克莱姆法则为且系数行列式不等于零时,可用克莱姆法则为了避免在计算中出现分数,可对有的方程乘以适了避免在计算中出现分数,可对有的方程乘以适当整数,把原方程组变成系数及常数项都是整数当整数,把原方程组变成系数及常数项都是整数的线性方程组后再求解的线性方程组后再求解.28)3(,3)2(,0)1(),(fffxf使使求一个二次多项式求一个二次多项式例10例

    14、10解解设所求的二次多项式为设所求的二次多项式为,)(2cbxxaxf 由题意得由题意得,2839)3(,324)2(,0)1(cbafcbafcbaf.,的线性方程组的线性方程组数数这是一个关于三个未知这是一个关于三个未知cba.20,60,40,020321 DDDD由克莱姆法则,得由克莱姆法则,得.1,3,2321 DDcDDbDDa于是,所求的多项式为于是,所求的多项式为.132)(2 xxxf证证.0,0,01,),(0000从而有系数行列式从而有系数行列式的非零解的非零解可视为齐次线性方程组可视为齐次线性方程组则则点点设所给三条直线交于一设所给三条直线交于一必要性必要性 bzayc

    15、xazcybxczbyaxzyyxxyxM.00,0,0 cbabaycxacybxcbyax条件是条件是相交于一点的充分必要相交于一点的充分必要直线直线证明平面上三条不同的证明平面上三条不同的 例11例11.0)()()()(21(222 accbbacbabacacbcba()baycxacybxcbyax,.0,cbacba故故同同也不全相也不全相所以所以因为三条直线互不相同因为三条直线互不相同将方程组将方程组如果如果充分性充分性,0 cba.00,唯唯一一解解下下证证此此方方程程组组()有有()到到第第三三个个方方程程,得得的的第第一一、二二两两个个方方程程加加 acybxcbyax.

    16、00)(2)()(002222222 accaaccacacaaccabbacbaccbba,从而有,从而有,于是,于是得得。由。由,则,则如果如果.)1(.)2(.0.00.0,02直直线线交交于于一一点点有有唯唯一一解解,即即三三条条不不同同方方程程组组从从而而知知有有唯唯一一解解组组由由克克莱莱姆姆法法则则知知,方方程程故故,与与题题设设矛矛盾盾得得再再由由得得由由不不妨妨设设 cbbaccbabacba例例12有甲、乙、丙三种化肥,甲种化肥每千有甲、乙、丙三种化肥,甲种化肥每千克含氮克含氮70克,磷克,磷8克,钾克,钾2克;乙种化肥每千克含克;乙种化肥每千克含氮氮64克,磷克,磷10克

    17、,钾克,钾0.6克;丙种化肥每千克含氮克;丙种化肥每千克含氮70克,磷克,磷5克,钾克,钾1.4克若把此三种化肥混合,要克若把此三种化肥混合,要求总重量求总重量23千克且含磷千克且含磷149克,钾克,钾30克,问三种化克,问三种化肥各需多少千克?肥各需多少千克?解解题意得方程组题意得方程组依依千克千克、各需各需设甲、乙、丙三种化肥设甲、乙、丙三种化肥,1xxx .304.16.02,1495108,23321321321xxxxxxxxx,527 D此此方方程程组组的的系系数数行行列列式式8127581 321 DDD,又又.15,5,332 xxx组组有有唯唯一一解解由由克克莱莱姆姆法法则则

    18、,此此方方程程.15,5,3 千千克克千千克克千千克克各各需需即即甲甲、乙乙、丙丙三三种种化化肥肥).(40,1552.1355.1357.1360.133020100:.)(000000332210准准确确到到小小数数两两位位时时水水银银密密度度求求由由实实验验测测得得以以下下数数据据的的关关系系为为与与温温度度设设水水银银密密度度 thttatataathth例例1313)1(.52.132700090030,55.13800040020,57.13100010010,6.13),(3210321032100 aaaaaaaaaaaaath得得方方程程组组将将测测得得的的数数据据分分别别代

    19、代入入解解)2(.008.02700903,005.0800402,003.010010,60.133213213210 aaaaaaaaaa得得方方程程组组分分别别代代入入其其余余三三个个方方程程将将,12000 D此此方方程程组组的的系系数数行行列列式式.0000033.0,00015.0,0042.0)2(,321 aaa的的唯唯一一解解得得方方程程组组由由克克莱莱姆姆法法则则,04.0,8.1,50321 DDD又又得得将将以以上上四四个个数数代代入入又又),(,60.130tha 由此得由此得.0000033.000015.00042.060.13)(32tttth .46.13,5

    20、6.13,40,15,00水银密度分别为水银密度分别为时时当当所以所以 t.46.13)40(,56.13)15(hh第一章第一章 测试题测试题一、填空题一、填空题(每小题每小题4 4分,共分,共4040分分)ijijnaDaaD则则若若,.1 1322133213321,0,.2xxxxxxxxxqpxxxxx列式列式则行则行的三个根的三个根是方程是方程设设行列式行列式.3 1000000001998000199700020001000D 4433221100000000.4ababbaba四阶行列式四阶行列式 443424144,.5AAAAcdbaacbdadbcdcbaD则则设四阶行列

    21、式设四阶行列式的的符符号号为为在在五五阶阶行行列列式式中中3524415312.6aaaaa 的系数是的系数是中中在函数在函数321112.7xxxxxxxf abcdbadccdabdcba四阶行列式四阶行列式.8,.9时时且且则当则当为实数为实数若若 baba010100 abba二、计算下列行列式二、计算下列行列式(每小题每小题9 9分,共分,共1818分分)0112210321011322211313211.15 D.10121121iiiiiiiinnnn 次次对对换换后后变变为为排排列列可可经经排排列列xzzzyxzzyyxzyyyxDn .2齐次方程组齐次方程组取何值取何值问问,

    22、0200321321321xxxxxxxxx 有非零解?有非零解?三、解答题三、解答题(9(9分分)四、证明四、证明(每小题每小题8 8分,共分,共2424分分);0321321321321.12222222222222222 ddddccccbbbbaaaa cos211cos21111cos211cos2.2 nD ;sin1sin n用用数数学学归归纳纳法法证证明明.3nnnnnnnnnnnnnxxxxxxxxxxxxxxxxD321223222122322213211111 2,121 nxxxxxjinijn五、五、(9(9分分)设设 行列式行列式nnnDn00103010021321 求第一行各元素的代数余子式之和求第一行各元素的代数余子式之和.11211nAAA .21 .10 ;0,0 .9 ;.8 ;2 .7 ;.6 ;0 .5 ;.4 ;!1998 .3 ;0 .2 ;1 .122222 41413232 nndcbabbaabbaaan一、一、.2 ;170 .1zyyxzzxynn 二、二、.00 或或三、三、.11!2 njjn五、五、测试题答案测试题答案

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:精选大学线性代数习题课资料课件.ppt
    链接地址:https://www.163wenku.com/p-5860058.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库