高数极限习题教材课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高数极限习题教材课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 极限 习题 教材 课件
- 资源描述:
-
1、机动 目录 上页 下页 返回 结束 习题课 第一章 机动 目录 上页 下页 返回 结束 1.填空题填空题(1)lim 2xx(填“存在”或“不存在”)(2)lim 2xx10(3)lim 2xx10(4)lim 2xx10(5)lim2xxxoy2xy 1解函数y=2x的图形如图所示.00不存在从而可以填出答案.其中题(5)的右极限由题(3)知不存在.机动 目录 上页 下页 返回 结束 2.判断题判断题01(1)lim cosxxx212(2)limnnn0()lim()xxf xg x原因(3)若(1)001limlimcosxxxx0;()22212limlimlimnnnnnnn0;()
2、存在,且0lim()0,xxg x则0lim()0.xxf x()因为正解的极限不存在.01limcosxx因为当x0时,x为无穷小,1cosx是有界函数,所以1cosxx仍是无穷小,从而01lim cos0.xxx机动 目录 上页 下页 返回 结束 2.判断题判断题01(1)lim cosxxx212(2)limnnn0()lim()xxf xg x原因(3)若(2)001limlimcosxxxx0;()22212limlimlimnnnnnnn0;()存在,且0lim()0,xxg x则0lim()0.xxf x()分开求和的极限只对有限项成立.正解21(1)2limnn nn11lim
3、12nn1.2212limnnn机动 目录 上页 下页 返回 结束 2.判断题判断题01(1)lim cosxxx212(2)limnnn0()lim()xxf xg x原因(3)若(3)001limlimcosxxxx0;()22212limlimlimnnnnnnn0;()存在,且0lim()0,xxg x则0lim()0.xxf x()0lim()xxf x0()lim()()xxf xg xg x00()limlim()()xxxxf xg xg x0.机动 目录 上页 下页 返回 结束 3.设设1,0,()1,0.xf xxxx解(1)求单侧极限(1)0lim()xf x(3)0li
4、m()xf x和0lim();xf x(2)0lim()xf x是否存在?1lim()xf x是否存在?01lim1xx11 01,0lim()xf x0limxx0.(2)由(1)知0lim()xf x0lim(),xf x故0lim()xf x不存在.(3)存在.因为1lim()xf x1limxx1.机动 目录 上页 下页 返回 结束 4.设设1230.9,0.99,0.999,xxx解(1)用10的方幂表示xn;(1)10.9x(2)lim.nnx求11,10 20.99x 11100 211,10 11.10n(2)limnnx1lim 110nn1 0 1.0.9999,0.999
5、9nx 机动 目录 上页 下页 返回 结束 124lim21xxx11lim21xxx112lim221xxxx2363lim44xxxxx1)1sin(lim331xxxxxxxsin2cos1lim0 xxx3)21(limxxxx2)1(lim1.2.3.4.6.7.8.9.求下列极限:求下列极限:3311lim0 xxx5.10.30sintanlimxxxx机动 目录 上页 下页 返回 结束 5.设下列极限:设下列极限:解(1)2272137(1)lim;49xxxx(2)(2)lim(1);nnnn 230sin(3)lim ln(1);xxxxx011(4)limsinsin;x
6、xxxx212(5)lim;1xxxx0sin ln(14)(6)lim.(1tan)(1 cos2)xxxxx2272137lim49xxxx7(7)(21)lim(7)(7)xxxxx721lim7xxx15.14lim(1)nnnn lim1nnnn 1lim111nn1.2机动 目录 上页 下页 返回 结束(3)(4)230sinlim ln(1)xxxxx2300sinlimln(1)limxxxxxx230sinln(01)limxxxxxx200sin1limlim1xxxxx011limsinsinxxxxx001sinlim sinlimxxxxxx0 11.1.注意到当x0
展开阅读全文